EPITHELIAL BARRIER HYPOTHESIS, MICROBIOME, AND IMMUNODEFICIENCY

Tuğba Önalan

Konya Necmettin Erbakan University, Faculty of Medicine, Department of Immunology and Allergic Diseases, Konya, Türkiye

Önalan T. Epithelial Barrier Hypothesis, Microbiome, and Immunodeficiency. In: Arslan Ş editor. Pulmonary Pathologies and Management Strategies in Primary Immunodeficiencies. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.15-31.

ABSTRACT

Epithelial barriers form the first line of defense against environmental exposures and play a fundamental role in both the activation and regulation of the immune system. The “Epithelial Barrier Hypothesis” proposes that disruption of these barriers may be a central factor in the development of a wide range of diseases, including allergies, autoimmune disorders, and chronic inflammatory conditions. This chapter provides a comprehensive overview of the structural features of epithelial barriers and their bidirectional interactions with immune cells and the microbiota. Particular emphasis is placed on the characteristics of epithelial barrier defects observed in commonly encountered primary immunodeficiency (PID) subtypes and the clinical manifestations of these defects in the respiratory and gastrointestinal systems.

Mucosal barrier dysfunction not only increases susceptibility to infections but also creates a predisposition to various autoimmune and inflammatory complications. The microbiota plays a critical role in shaping immune responses by modulating the interaction between epithelial cells and the immune system through the production of bioactive molecules. In this context, microbiota-targeted interventions, cytokine-based biologic agents, growth factors that support epithelial repair, and nutrition-based supportive strategies are emerging as complementary therapeutic options in PID management. This integrative approach proposes a novel paradigm that centers not only on systemic immune dysfunction but also on local mucosal health.

Keywords: Epithelial barrier; Primary immunodeficiency; Microbiota; CVID; Bronchiectasis; Mucosal immunity

Referanslar

  1. Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nature reviews Immunology. 2021;21(11):739-751. [Crossref]  [PubMed]
  2. Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature reviews Immunology. 2018;18(2):105-120. [Crossref]  [PubMed]
  3. York N, San C, Athens F, Madrid L, City M. Junqueira's Basic Histology, 15th edition, 2018.
  4. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature reviews Immunology. 2014;14(3):141-53. [Crossref]  [PubMed]
  5. Basile EJ, Launico MV, Sheer AJ. Physiology, Nutrient Absorption. In, eds. StatPearls. ed. StatPearls Publishing Copyright © 2025.
  6. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annual review of immunology. 2015;33:257-90. [Crossref]  [PubMed]  [PMC]
  7. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal immunology. 2012;5(3):232-9. [Crossref]  [PubMed]  [PMC]
  8. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science (New York, NY). 2010;327(5963):291-5. [Crossref]  [PubMed]  [PMC]
  9. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819-26. [Crossref]  [PubMed]
  10. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557-69. [Crossref]  [PubMed]  [PMC]
  11. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775-87. [Crossref]  [PubMed]
  12. Fasano A. Leaky gut and autoimmune diseases. Clinical reviews in allergy & immunology. 2012;42(1):71-8. [Crossref]  [PubMed]
  13. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell research. 2020;30(6):492-506. [Crossref]  [PubMed]  [PMC]
  14. Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Frontiers in immunology. 2017;8:942. [Crossref]  [PubMed]  [PMC]
  15. Maeda Y, Takeda K. Host-microbiota interactions in rheumatoid arthritis. Experimental & molecular medicine. 2019;51(12):1-6. [Crossref]  [PubMed]  [PMC]
  16. Belizário JE, Faintuch J, Garay-Malpartida M. Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of inflammation. 2018;2018:2037838. [Crossref]  [PubMed]  [PMC]
  17. Aleti G, Troyer EA, Hong S. G protein-coupled receptors: A target for microbial metabolites and a mechanistic link to microbiome-immune-brain interactions. Brain, behavior, & immunity health. 2023;32:100671. [Crossref]  [PubMed]  [PMC]
  18. Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. ShortChain Fatty Acid Transporters: Role in Colonic Homeostasis. Comprehensive Physiology. 2017;8(1):299-314. [Crossref]  [PubMed]  [PMC]
  19. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature reviews Gastroenterology & hepatology. 2019;16(8):461-478. [Crossref]  [PubMed]
  20. Yang X, Solomon S, Fraser LR, Trombino AF, Liu D, Sonenshein GE, et al. Constitutive regulation of CYP1B1 by the aryl hydrocarbon receptor (AhR) in pre-malignant and malignant mammary tissue. Journal of cellular biochemistry. 2008;104(2):402-17. [Crossref]  [PubMed]
  21. Leblhuber F, Ehrlich D, Steiner K, Geisler S, Fuchs D, Lanser L, et al. The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota. Nutrients. 2021;13(2) [Crossref]  [PubMed]  [PMC]
  22. Perkin MR, Strachan DP. The hygiene hypothesis for allergy conception and evolution. Frontiers in allergy. 2022;3:1051368. [Crossref]  [PubMed]  [PMC]
  23. Tang Q, Peng X, Xu B, Zhou X, Chen J, Cheng L. Current Status and Future Directions of Bacteria-Based Immunotherapy. Frontiers in immunology. 2022;13:911783. [Crossref]  [PubMed]  [PMC]
  24. Cunningham-Rundles C. How I treat common variable immune deficiency. Blood. Jul 8 2010;116(1):7-15. [Crossref]  [PubMed]  [PMC]
  25. Pellicciotta M, Rigoni R, Falcone EL, Holland SM, Villa A, Cassani B. The microbiome and immunodeficiencies: Lessons from rare diseases. Journal of autoimmunity. 2019;98:132-148. [Crossref]  [PubMed]
  26. Carsetti R, Di Sabatino A, Rosado MM, Cascioli S, Piano Mortari E, Milito C, et al. Lack of Gut Secretory Immunoglobulin A in Memory B-Cell Dysfunction-Associated Disorders: A Possible Gut-Spleen Axis. Frontiers in immunology. 2019;10:2937. [Crossref]  [PubMed]  [PMC]
  27. Greiwe J. Dendritic Cells in Primary Immunodeficiency. In, eds. ed. 2021:255-267. [Crossref]
  28. Lollo C, de Moraes Vasconcelos D, Oliveira L, Domingues R, Carvalho GC, Duarte A, et al. Chemokine, cytokine and type I interferon production induced by Toll-like receptor activation in common variable immune deficiency. Clinical immunology (Orlando, Fla). 2016;169:121-127. [Crossref]  [PubMed]
  29. Ramzi N, Jamee M, Bakhtiyari M, Rafiemanesh H, Zainaldain H, Tavakol M, et al. Bronchiectasis in common variable immunodeficiency: A systematic review and meta-analysis. Pediatric pulmonology. 2020;55(2):292-299. [Crossref]  [PubMed]
  30. Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology American Society of Hematology Education Program. 2012;2012:301-5. [Crossref]  [PubMed]
  31. Friedmann D, Unger S, Keller B, Rakhmanov M, Goldacker S, Zissel G, et al. Bronchoalveolar Lavage Fluid Reflects a T(H)1-CD21(low) B-Cell Interaction in CVID-Related Interstitial Lung Disease. Frontiers in immunology. 2020;11:616832. [Crossref]  [PubMed]  [PMC]
  32. Litzman J. Influence of FCRN expression on lung decline and intravenous immunoglobulin catabolism in common variable immunodeficiency patients. Clinical and experimental immunology. 2014;178 Suppl 1(Suppl 1):103-4. [Crossref]  [PubMed]  [PMC]
  33. Milota T, Bloomfield M, Parackova Z, Sediva A, Bartunkova J, Horvath R. Bronchial Asthma and Bronchial Hyperresponsiveness and Their Characteristics in Patients with Common Variable Immunodeficiency. International archives of allergy and immunology. 2019;178(2):192-200. [Crossref]  [PubMed]
  34. Urm SH, Yun HD, Fenta YA, Yoo KH, Abraham RS, Hagan J, et al. Asthma and risk of selective IgA deficiency or common variable immunodeficiency: a population-based case-control study. Mayo Clinic proceedings. 2013;88(8):813-21. [Crossref]  [PubMed]  [PMC]
  35. Buret AG. Mechanisms of epithelial dysfunction in giardiasis. Gut. 2007;56(3):316-7. [Crossref]  [PubMed]  [PMC]
  36. Hashash JG, Squire J, Francis FF, Binion DG, Cross RK, Farraye FA. An Expert Opinion/Approach: Clinical Presentations, Diagnostic Considerations, and Therapeutic Options for Gastrointestinal Manifestations of Common Variable Immune Deficiency. The American journal of gastroenterology. 2022;117(11):1743-1752. [Crossref]  [PubMed]
  37. Jørgensen SF, Trøseid M, Kummen M, Anmarkrud JA, Michelsen AE, Osnes LT, et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal immunology. 2016;9(6):1455-1465. [Crossref]  [PubMed]
  38. Shulzhenko N, Dong X, Vyshenska D, Greer RL, Gurung M, Vasquez-Perez S, et al. CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clinical immunology (Orlando, Fla). 2018;197:139-153. [Crossref]  [PubMed]  [PMC]
  39. Cunningham-Rundles C. Immunodeficiency and Mucosal Immunity. ed. vol Mucosal Immunology. 2005:1145-57. [Crossref]  [PMC]
  40. Aghamohammadi A, Cheraghi T, Gharagozlou M, Movahedi M, Rezaei N, Yeganeh M, et al. IgA deficiency: correlation between clinical and immunological phenotypes. Journal of clinical immunology. 2009;29(1):130-6. [Crossref]  [PubMed]
  41. Di Tola M, Bizzaro N, Gaudio M, Maida C, Villalta D, Alessio MG, et al. Diagnosing and Monitoring Celiac Patients with Selective IgA Deficiency: Still an Open Issue. Digestive diseases and sciences. 2021;66(10):3234-3241. [Crossref]  [PubMed]
  42. Schussler E, Beasley MB, Maglione PJ. Lung Disease in Primary Antibody Deficiencies. The journal of allergy and clinical immunology In practice. 2016;4(6):1039-1052. [Crossref]  [PubMed]  [PMC]
  43. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with Chronic Granulomatous Disease: an Italian multicenter study. Clinical immunology (Orlando, Fla). 2008;126(2):155-64. [Crossref]  [PubMed]
  44. Lent-Schochet D, Jialal I. Chronic Granulomatous Disease. In, eds. StatPearls. ed. StatPearls Publishing Copyright © 2025.
  45. Virgin HW, Levine B. Autophagy genes in immunity. Nature immunology. 2009;10(5):461-70. [Crossref]  [PubMed]  [PMC]
  46. Davrandi M, Harris S, Smith PJ, Murray CD, Lowe DM. The Relationship Between Mucosal Microbiota, Colitis, and Systemic Inflammation in Chronic Granulomatous Disorder. Journal of clinical immunology. 2022;42(2):312-324. [Crossref]  [PubMed]
  47. Jonckheere AC, Steelant B, Seys SF, Cremer J, Dilissen E, Boon L, et al. Peribronchial Inflammation Resulting from Regulatory T Cell Deficiency Damages the Respiratory Epithelium and Disturbs Barrier Function. Journal of immunology (Baltimore, Md : 1950). 2022;209(8):1595-1605. [Crossref]  [PubMed]
  48. Castagnoli R, Pala F, Bosticardo M, Licari A, Delmonte OM, Villa A, et al. Gut Microbiota-Host Interactions in Inborn Errors of Immunity. International journal of molecular sciences. 2021;22(3) [Crossref]  [PubMed]  [PMC]
  49. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, et al. Microbial-Derived Butyrate Promotes Epithelial Barrier Function through IL-10 Receptor-Dependent Repression of Claudin-2. The Journal of Immunology. 2017;199(8):2976-2984. [Crossref]  [PubMed]  [PMC]
  50. Costa RL, Moreira J, Lorenzo A, Lamas CC. Infectious complications following probiotic ingestion: a potentially underestimated problem? A systematic review of reports and case series. BMC complementary and alternative medicine. 2018;18(1):329. [Crossref]  [PubMed]  [PMC]
  51. Matsuura N, Kanayama M, Watanabe Y, Yamada H, Lili L, Torii A. Effect of Personalized Prebiotic and Probiotic Supplements on the Symptoms of Irritable Bowel Syndrome: An Open-Label, Single-Arm, Multicenter Clinical Trial. Nutrients. 2024;16(19) [Crossref]  [PubMed]  [PMC]
  52. Napiórkowska-Baran K, Biliński J, Pujanek M, Hałakuc P, Pietryga A, Szymczak B, et al. Fecal microbiota transplantation in a patient with chronic diarrhea and primary and secondary immunodeficiency (common variable immunodeficiency and splenectomy). Frontiers in cellular and infection microbiology. 2024;14:1456672. [Crossref]  [PubMed]  [PMC]
  53. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, et al. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021;184(16):4137-4153.e14. [Crossref]  [PubMed]  [PMC]
  54. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue barriers. 2016;4(4):e1251384. [Crossref]  [PubMed]  [PMC]
  55. Poto R, Pecoraro A, Ferrara AL, Punziano A, Lagnese G, Messuri C, et al. Cytokine dysregulation despite immunoglobulin replacement therapy in common variable immunodeficiency (CVID). Frontiers in immunology. 2023;14:1257398. [Crossref]  [PubMed]  [PMC]
  56. Zhang X, Liu S, Wang Y, Hu H, Li L, Wu Y, et al. Interleukin-22 regulates the homeostasis of the intestinal epithelium during inflammation. International journal of molecular medicine. 2019;43(4):1657-1668. [Crossref]  [PubMed]  [PMC]
  57. Hiroshima Y, Hsu K, Tedla N, Chung YM, Chow S, Herbert C, et al. S100A8 induces IL-10 and protects against acute lung injury. Journal of immunology (Baltimore, Md : 1950). 2014;192(6):2800-11. [Crossref]  [PubMed]
  58. Achamrah N, Déchelotte P, Coëffier M. Glutamine and the regulation of intestinal permeability: from bench to bedside. Current opinion in clinical nutrition and metabolic care. Jan 2017;20(1):86-91. [Crossref]  [PubMed]
  59. Kong S, Zhang YH, Zhang W. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids. BioMed research international. 2018;2018:2819154. [Crossref]  [PubMed]  [PMC]
  60. E LB, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and Immune Regulation: Antibacterial, Antiviral, Anti-Inflammatory. JBMR plus. 2021;5(1):e10405. [Crossref]  [PubMed]  [PMC]
  61. Bakdash G, Vogelpoel LT, van Capel TM, Kapsenberg ML, de Jong EC. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal immunology. 2015;8(2):265-78. [Crossref]  [PubMed]
  62. Inoue T, Tanaka M, Masuda S, Ohue-Kitano R, Yamak age H, Muranaka K, et al. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochimica et biophysica acta Molecular and cell biology of lipids. 2017;1862(5):552-560. [Crossref]  [PubMed]