Experimental Models of Aging

Alper OKYARa , İ. Halil KAVAKLIb , Seval AKYÜREKc

aİstanbul University Faculty of Pharmacy, Department of Pharmacology, İstanbul, Türkiye
bKoç University Faculty of Engineering, Department of Chemical and Biological Engineering, İstanbul, Türkiye
cİstanbul University Faculty of Pharmacy, Department of Pharmacology (Master’s Program), İstanbul, Türkiye

ABSTRACT
Aging is a complex biological process marked by the gradual degradation of cellular functions and tissues due to multiple factors, including oxidative stress, genomic instability, telomere shortening, epigenetic changes, and cellular senescence. Understanding these aging mechanisms is crucial for developing strategies to extend healthy lifespans and combat age-related diseases. Various experimental models have been employed to investigate aging, ranging from in vitro cell cultures to single-cell organisms and complex primates. Each model has distinct advantages and limitations, making them valuable tools in aging-related research. This review provides an overview of experimental aging models, including in vitro systems, invertebrate models, and preclinical vertebrate models, and discusses their pros and cons. We assess these models’ ability to replicate the complexities of human aging and their translational potential. Emphasizing the importance of considering alternative animal models, we aim to gain a more comprehensive understanding of aging processes and their relevance to human health.
Keywords: Aging; animal models; experimental models

Referanslar

  1. Kaeberlein M. Lessons on longevity from budding yeast. Nature. 2010;464(7288):513-9. Erratum in: Nature. 2010;464(7293):1390. [Crossref]  [PubMed]  [PMC]
  2. Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, Carmona-Gutierrez D. Yeast as a tool to identify anti-aging compounds. FEMS Yeast Res. 2018;18(6):foy020. [Crossref]  [PubMed]  [PMC]
  3. Gershon H, Gershon D. The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mech Ageing Dev. 2000;120(1-3):1-22. [Crossref]  [PubMed]
  4. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191-6. [Crossref]  [PubMed]
  5. WormAtlas [Internet]. WormAtlas ©2023. [Access date: 04.08.2023]. Access link: [Link]
  6. Mack HI, Heimbucher T, Murphy CT. The nematode Caenorhabditis elegans as a model for aging research. Drug Discov Today Dis Models. 2018;27:3-13. [Crossref]
  7. Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA. C. elegans as a model organism to investigate molecular pathways involved with Parkinson's disease. Dev Dyn. 2010;239(5):1282-95. [Crossref]  [PubMed]
  8. Tissenbaum HA. Using C. elegans for aging research. Invertebr Reprod Dev. 2015;59(sup1):59-63. [Crossref]  [PubMed]  [PMC]
  9. Helfand SL, Rogina B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet. 2003;37:329-48. [Crossref]  [PubMed]
  10. Piper MDW, Partridge L. Drosophila as a model for ageing. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9 Pt A):2707-17. [Crossref]  [PubMed]
  11. Brandt A, Vilcinskas A. The Fruit Fly Drosophila melanogaster as a Model for Aging Research. Adv Biochem Eng Biotechnol. 2013;135:63-77. [Crossref]  [PubMed]
  12. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev. 2011;63(2):411-36. [Crossref]  [PubMed]  [PMC]
  13. Gerhard GS. Comparative aspects of zebrafish (Danio rerio) as a model for aging research. Exp Gerontol. 2003;38(11-12):1333-41. [Crossref]  [PubMed]
  14. Kirschner J, Weber D, Neuschl C, Franke A, Böttger M, Zielke L, et al. Mapping of quantitative trait loci controlling lifespan in the short-lived fish Nothobranchius furzeri--a new vertebrate model for age research. Aging Cell. 2012;11(2):252-61. [Crossref]  [PubMed]  [PMC]
  15. Hu CK, Brunet A. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell. 2018;17(3):e12757. [Crossref]  [PubMed]  [PMC]
  16. Vanhooren V, Libert C. The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev. 2013;12(1):8-21. [Crossref]  [PubMed]
  17. Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: Lesson from Model Organisms. Genes (Basel). 2019;10(7):518. [Crossref]  [PubMed]  [PMC]
  18. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A. Dwarf mice and the ageing process. Nature. 1996;384(6604):33. [Crossref]  [PubMed]
  19. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A. 2001;98(12):6736-41. [Crossref]  [PubMed]  [PMC]
  20. Bartke A, Brown-Borg HM, Bode AM, Carlson J, Hunter WS, Bronson RT. Does growth hormone prevent or accelerate aging? Exp Gerontol. 1998;33(7-8):675-87. [Crossref]  [PubMed]
  21. Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev. 2016;160:41-53. [Crossref]  [PubMed]
  22. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45-51. [Crossref]  [PubMed]
  23. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829-33. [Crossref]  [PubMed]  [PMC]
  24. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, et al. A new murine model of accelerated senescence. Mech Ageing Dev. 1981;17(2):183-94. [Crossref]  [PubMed]
  25. Harkema L, Youssef SA, de Bruin A. Pathology of Mouse Models of Accelerated Aging. Vet Pathol. 2016;53(2):366-89. [Crossref]  [PubMed]
  26. Cai N, Wu Y, Huang Y. Induction of accelerated aging in a mouse model. Cells. 2022;11(9):1418. [Crossref]  [PubMed]  [PMC]
  27. Wei H, Li L, Song Q, Ai H, Chu J, Li W. Behavioural study of the D-galactose induced aging model in C57BL/6J mice. Behav Brain Res. 2005;157(2):245-51. [Crossref]  [PubMed]
  28. Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci. 2023;11:207-26. [Crossref]  [PubMed]
  29. Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R. Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J. 2011;52(1):41-53. [Crossref]  [PubMed]
  30. Buffenstein R. The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci. 2005;60(11):1369-77. [Crossref]  [PubMed]
  31. Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age (Dordr). 2008;30(2-3):111-9. [Crossref]  [PubMed]  [PMC]
  32. Mouse Phenome Database [Internet]. The Jackson Laboratory© 2001-2023 [Access date: 08.08.2023]. ITP1: Interventions Testing Program. Access link: [Link]
  33. Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet. 2019;10:948. [Crossref]  [PubMed]  [PMC]
  34. Studzinski CM, Christie LA, Araujo JA, Burnham WM, Head E, Cotman CW, et al. Visuospatial function in the beagle dog: an early marker of cognitive decline in a model of human aging and dementia. Neurobiol Learn Mem. 2006;86(2):197-204. [Crossref]  [PubMed]
  35. Hoffman JM, Creevy KE, Franks A, O'Neill DG, Promislow DEL. The companion dog as a model for human aging and mortality. Aging Cell. 2018;17(3):e12737. [Crossref]  [PubMed]  [PMC]
  36. Ruple A, MacLean E, Snyder-Mackler N, Creevy KE, Promislow D. Dog Models of Aging. Annu Rev Anim Biosci. 2022;10:419-39. [Crossref]  [PubMed]  [PMC]
  37. Colman RJ. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9 Pt A):2733-41. [Crossref]  [PubMed]  [PMC]
  38. Uno H. Age-related pathology and biosenescent markers in captive rhesus macaques. Age (Omaha). 1997;20(1):1-13. [Crossref]  [PubMed]  [PMC]
  39. Zhang Z, Andersen A, Smith C, Grondin R, Gerhardt G, Gash D. Motor slowing and parkinsonian signs in aging rhesus monkeys mirror human aging. J Gerontol A Biol Sci Med Sci. 2000;55(10):B473-80. [Crossref]  [PubMed]
  40. Glavis-Bloom C, Vanderlip CR, Reynolds JH. Age-Related Learning and Working Memory Impairment in the Common Marmoset. J Neurosci. 2022;42(47):8870-80. [Crossref]  [PubMed]  [PMC]
  41. Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G, et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev. 2012;11(1):150-62. [Crossref]  [PubMed]
  42. Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, et al. Nontraditional systems in aging research: an update. Cell Mol Life Sci. 2021;78(4):1275-304. [Crossref]  [PubMed]  [PMC]
  43. senescence.info [Internet]. João Pedro de Magalhães © 1997 - 2014, 2018, 2021 [Access date: 14.08.2023] An Age: The animal ageing and longevity database. Access link: [Link]
  44. Lee BP, Smith M, Buffenstein R, Harries LW. Negligible senescence in naked mole rats may be a consequence of well-maintained splicing regulation. Geroscience. 2020;42(2):633-51. [Crossref]  [PubMed]  [PMC]
  45. Ruby JG, Smith M, Buffenstein R. Naked Mole-Rat mortality rates defy gompertzian laws by not increasing with age. Elife. 2018;7:e31157. [Crossref]  [PubMed]  [PMC]
  46. Riccio AP, Goldman BD. Circadian rhythms of locomotor activity in naked mole-rats (Heterocephalus glaber). Physiol Behav. 2000;71(1-2):1-13. [Crossref]  [PubMed]