FROM STRUCTURE TO FUNCTION: BRAIN DRAINAGE SYSTEMS

Nagihan Mantar

İstanbul Medipol University, Vocational School of Health Services, Program of Electroneurophysiology, İstanbul, Türkiye

Mantar N. From Structure to Function: Brain Drainage Systems. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.173182.

ABSTRACT

This chapter focuses on the glymphatic system and meningeal lymphatics, which are essential for managing brain drainage. Recent studies underscore their pivotal role in central nervous system homeostasis and clearing metabolic byproducts. The brain is a metabolically active organ and utilizes different pathways to clear metabolic waste. The glymphatic system, a clearance pathway that relies on glial cells to remove soluble proteins and metabolic wastes from the cerebrospinal fluid, and its functionally connected meningeal lymphatics are regarded the major pathways for brain waste clearance. Both systems play an important role in brain homeostasis, and disruption of this maintenance has been associated with various neurological diseases. Therefore, we discuss the anatomical, functional, and clinical aspects of the glymphatic system and meningeal lymphatics concerning central nervous system waste removal mechanisms.

Keywords: Glymphatic system; Meningeal lymphatic vessels; Perivascular space; Cerebrospinal fluid; Neurological disorders

Referanslar

  1. Raichle ME, Gusnard DA. Appraising the brain's energy budget. Proc Natl Acad Sci U S A. 2002;99(16):102379. [Crossref]  [PubMed]  [PMC]
  2. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. [Crossref]  [PubMed]  [PMC]
  3. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):3737. [Crossref]  [PubMed]  [PMC]
  4. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional fea tures of central nervous system lymphatic vessels. Nature. 2015;523(7560):33741. [Crossref]  [PubMed]  [PMC]
  5. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. The Journal of experimental medicine. 2015;212(7):9919. [Crossref]  [PubMed]  [PMC]
  6. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560(7717):18591. [Crossref]  [PubMed]  [PMC]
  7. Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annu Rev Pathol. 2018;13:37994. [Crossref]  [PubMed]  [PMC]
  8. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. The Lancet Neurology. 2018;17(11):101624. [Crossref]  [PubMed]
  9. Jiang H, Wei H, Zhou Y, Xiao X, Zhou C, Ji X. Overview of the meningeal lymphatic vessels in aging and central nervous system disorders. Cell & bioscience. 2022;12(1):202. [Crossref]  [PubMed]  [PMC]
  10. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke. 2013;44(6 Suppl 1):S935. [Crossref]  [PubMed]  [PMC]
  11. Yu L, Hu X, Li H, Zhao Y. Perivascular Spaces, Glymphatic System and MR. Frontiers in neurology. 2022;13:844938. [Crossref]  [PubMed]  [PMC]
  12. Mestre H, Tithof J, Du T, Song W, Peng W, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature communications. 2018;9(1):4878. [Crossref]  [PubMed]  [PMC]
  13. Nielsen S, Nagelhus EA, AmiryMoghaddam M, Bourque C, et al. Specialized membrane domains for water transport in glial cells: highresolution immunogold cytochemistry of aquaporin4 in rat brain. J Neurosci. 1997;17(1):17180. [Crossref]  [PubMed]  [PMC]
  14. Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer's disease. Neurological research and practice. 2021;3(1):5. [Crossref]  [PubMed]  [PMC]
  15. Bojarskaite L, Nafari S, Ravnanger AK, Frey MM, Skauli N, et al. Role of aquaporin4 polarization in extracellular solute clearance. Fluids and barriers of the CNS. 2024;21(1):28. [Crossref]  [PubMed]  [PMC]
  16. Nicholson C, KamaliZare P, Tao L. Brain Extracellular Space as a Diffusion Barrier. Computing And Visualization In Science. 2011;14(7):30925. [Crossref]  [PubMed]  [PMC]
  17. Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system? Acta Neuropathol. 2018;135(3):387407. [Crossref]  [PubMed]
  18. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res. 2015;40(12):258399. [Crossref]  [PubMed]  [PMC]
  19. Kim JH, Yoo RE, Choi SH, Park SH. Noninvasive flow mapping of parasagittal meningeal lymphatics using 2D interslice flow saturation MRI. Fluids and barriers of the CNS. 2023;20(1):37. [Crossref]  [PubMed]  [PMC]
  20. Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2022;42(8):136482. [Crossref]  [PubMed]  [PMC]
  21. Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572(7767):626. [Crossref]  [PubMed]
  22. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife. 2017;6. [Crossref]  [PubMed]  [PMC]
  23. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. The Journal of clinical investigation. 2017;127(9):32109. [Crossref]  [PubMed]  [PMC]
  24. Chachaj A, Gasiorowski K, Szuba A, Sieradzki A, Leszek J. The Lymphatic System In The Brain Clearance Mechanisms New Therapeutic Perspectives For Alzheimer's Disease. Current neuropharmacology. 2023;21(2):38091. [Crossref]  [PubMed]  [PMC]
  25. Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain. 2020;143(8):257693. [Crossref]  [PubMed]  [PMC]
  26. Fuxe K, Agnati LF, Marcoli M, BorrotoEscuela DO. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. Neurochem Res. 2015;40(12):260014. [Crossref]  [PubMed]
  27. Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021;41(37):7698711. [Crossref]  [PubMed]  [PMC]
  28. Sun X, Dias L, Peng C, Zhang Z, Ge H, et al. 40 Hz light flickering facilitates the glymphatic flow via adenosine signaling in mice. Cell discovery. 2024;10(1):81. [Crossref]  [PubMed]  [PMC]
  29. Schartz D, Finkelstein A, Hoang N, Bender MT, Schifitto G, Zhong J. DiffusionWeighted Imaging Reveals Impaired Glymphatic Clearance in Idiopathic Intracranial Hypertension. AJNR American journal of neuroradiology. 2024;45(2):14954. [Crossref]  [PubMed]  [PMC]
  30. Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTIALPS) in Alzheimer's disease cases. Japanese journal of radiology. 2017;35(4):1728. [Crossref]  [PubMed]
  31. Thakkar RN, Kioutchoukova IP, Griffin I, Foster DT, Sharma P, et al. Mapping the Glymphatic Pathway Using Imaging Advances. J. 2023;6(3):47791. [Crossref]
  32. Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiological reviews. 2022;102(2):1025151. [Crossref]  [PubMed]  [PMC]
  33. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep. 2018;8(1):7194. [Crossref]  [PubMed]  [PMC]
  34. Ma J, Chen M, Liu GH, Gao M, Chen NH, et al. Effects of sleep on the glymphatic functioning and multimodal human brain network affecting memory in older adults. Mol Psychiatry. 2024. [Crossref]  [PubMed]  [PMC]
  35. Gedek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Frontiers in neurology. 2023;14:1232304. [Crossref]  [PubMed]  [PMC]
  36. Lee H, Xie L, Yu M, Kang H, Feng T, et al. The Effect of Body Posture on Brain Glymphatic Transport. J Neurosci. 2015;35(31):1103444. [Crossref]  [PubMed]  [PMC]
  37. Reddy OC, van der Werf YD. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain sciences. 2020;10(11). [Crossref]  [PubMed]  [PMC]
  38. Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nature communications. 2020;11(1):4411. [Crossref]  [PubMed]  [PMC]
  39. Ang PS, Zhang DM, Azizi SA, Norton de Matos SA, Brorson JR. The glymphatic system and cerebral small vessel disease. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association. 2024;33(3):107557. [Crossref]  [PubMed]  [PMC]
  40. Soldozy S, Yagmurlu K, Kumar J, Elarjani T, Burks J, et al. Interplay between vascular hemodynamics and the glymphatic system in the pathogenesis of idiopathic normal pressure hydrocephalus, exploring novel neuroimaging diagnos tics. Neurosurgical review. 2022;45(2):125561. [Crossref]  [PubMed]
  41. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):84561. [Crossref]  [PubMed]  [PMC]
  42. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nature neuroscience. 2018;21(10):138091. [Crossref]  [PubMed]  [PMC]
  43. Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends in immunology. 2016;37(2):15465. [Crossref]  [PubMed]
  44. JiangXie LF, Drieu A, Kipnis J. Waste clearance shapes aging brain health. Neuron. 2024. [Crossref]  [PubMed]
  45. Okazawa H, Nogami M, Ishida S, Makino A, Mori T, Kiyono Y, et al. PET/MRI multimodality imaging to evaluate changes in glymphatic system function and biomarkers of Alzheimer's disease. Sci Rep. 2024;14(1):12310. [Crossref]  [PubMed]  [PMC]
  46. das Neves SP, Delivanoglou N, Ren Y, Cucuzza CS, Makuch M, Almeida F, et al. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity. 2024;57(10):232843 e8. [Crossref]  [PubMed]
  47. Perla M, Caretti V, Moro MA, McCullough LD. Role of the Meningeal Lymphatics in Stroke. Stroke. 2023;54(6):16703. [Crossref]  [PubMed]  [PMC]
  48. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34(49):1618093. [Crossref]  [PubMed]  [PMC]
  49. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nature communications. 2020;11(1):4524. [Crossref]  [PubMed]  [PMC]
  50. Park HJ, Paik SM, Kim JR, Lee MH, Lee WJ, Lee SK, et al. 1006 Effect of Obstructive Sleep Apnea on the Longitudinal Change in the Glymphatic System Function. Sleep. 2024;47(Supplement_1):A432A. [Crossref]