FUNGAL AND MYCOBACTERIAL PULMONARY INFECTIONS IN PRIMARY IMMUNODEFICIENCIES

Mehmet Emin Gerek

Konya Necmettin Erbakan University, Faculty of Medicine, Department of Immunology and Allergic Diseases, Konya, Türkiye

Gerek ME. Fungal and Mycobacterial Pulmonary Infections in Primary Immunodeficiencies. In: Arslan Ş editor. Pulmonary Pathologies and Management Strategies in Primary Immunodeficiencies. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.45-59.

ABSTRACT

Primary immunodeficiencies (PIDs) are rare disorders caused by genetic mutations affecting various immune system components. These defects render individuals particularly susceptible to a broad range of infections, notably those caused by fungal and mycobacterial pathogens. Dysregulations in interleukin-17 (IL-17) and interferon-gamma (IFN-g) pathways significantly impair host defense mechanisms against Candida, Aspergillus species, and mycobacteria. Defects in the IL-17 pathway are linked to mucosal candidiasis, while mutations in CARD9 contribute to both mucosal and invasive fungal infections. Similarly, abnormalities in the interleukin-12/23 (IL-12/23)–IFN-g axis underlie Mendelian susceptibility to mycobacterial diseases (MSMD), a rare yet severe clinical entity. This chapter provides a comprehensive overview of epidemiology, pathophysiology, clinical manifestations, diagnostic approaches, and therapeutic strategies related to monogenic PIDs predisposing fungal and mycobacterial infections. The infection spectrum and treatment responsiveness associated with genetic defects such as Chronic Granulomatous Disease (CGD), signal transducer and activator of transcription 1/3 (STAT1/STAT3) mutations, interleukin-12 receptor subunit beta-1 (IL12RB1), interferon-gamma receptor 1 (IFNGR1), and tyrosine kinase 2 (TYK2) are thoroughly discussed. Diagnostic strategies incorporate biomarkers like galactomannan and beta-D-glucan, advanced imaging techniques such as high-resolution computed tomography (HRCT) and positron emission tomography–computed tomography (PET-CT), and genetic analyses. Treatment includes targeted antifungal and antimycobacterial agents and immunomodulatory and curative approaches, such as recombinant IFN-g therapy and hematopoietic stem cell transplantation (HSCT). Preventive measures encompass prophylactic treatments, environmental control strategies, genetic screening programs, and vaccination efforts, which are particularly important for high-risk populations in reducing infection burden. Emerging advancements in gene-editing technologies, artificial intelligence–assisted diagnostic platforms, and the integration of international surveillance data herald a new era in managing PID-associated infections.

Keywords: Primary immunodeficiency; Fungal pulmonary infections; Mycobacterial pulmonary infections; IL-17/CARD9 pathway; IL-12/IFN-g axis; Chronic Granulomatous Disease (CGD); Mendelian Susceptibility to Mycobacterial Disease (MSMD)

Referanslar

  1. Jesenak M, Banovcin P, Jesenakova B, Babusikova E. Pulmonary manifestations of primary immunodeficiency disorders in children. Front Pediatr. 2014;2:77. [Crossref]  [PubMed]  [PMC]
  2. Bustamante J. Mendelian susceptibility to mycobacterial disease: recent discoveries. Hum Genet. 2020;139(6-7):9931000. [Crossref]  [PubMed]  [PMC]
  3. Cifaldi C, Ursu GM, D'Alba I, Paccoud O, Danion F, Lanternier F, et al. Main human inborn errors of immunity leading to fungal infections. Clin Microbiol Infect. 2022;28(11):1435-1440. [Crossref]  [PubMed]
  4. Maródi L, Cypowyj S, Casanova J-L, Puel A. The role of human IL-17 immunity in fungal disease. Current Fungal Infection Reports. 2013;7:132-137. [Crossref]
  5. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova JL, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25(6):736-47. [Crossref]  [PubMed]  [PMC]
  6. Li J, Vinh DC, Casanova JL, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46-57. [Crossref]  [PubMed]  [PMC]
  7. Drewniak A, Gazendam RP, Tool AT, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385-92. [Crossref]  [PubMed]
  8. Lionakis MS, Levitz SM. Host Control of Fungal Infections: Lessons from Basic Studies and Human Cohorts. Annu Rev Immunol. Apr 26 2018;36:157-191. [Crossref]  [PubMed]
  9. Errami A, Baghdadi JE, Ailal F, Benhsaien I, Bakkouri JE, Jeddane L, et al. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical, Immunological, and Genetic Features of 22 Patients from 15 Moroccan Kindreds. J Clin Immunol. 2023;43(4):728-740. [Crossref]  [PubMed]  [PMC]
  10. Das J, Banday AZ, Shandilya J, Sharma M, Vignesh P, Rawat A. An updated review on Mendelian susceptibility to mycobacterial diseasesa silver jubilee celebration of its first genetic diagnosis. Expert Rev Clin Immunol. 2021;17(10):11031120. [Crossref]  [PubMed]
  11. Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, et al. Impaired IL-23-dependent induction of IFN- underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med. 2022;219(10) [Crossref]  [PubMed]  [PMC]
  12. Olbrich P, Ferreras-Antolin L. STAT immunodeficiency disorders and fungal infection susceptibility. Current Fungal Infection Reports. 2021;15:1-7. [Crossref]
  13. Xia L, Liu XH, Yuan Y, Lowrie DB, Fan XY, Li T, et al. An Updated Review on MSMD Research Globally and A Literature Review on the Molecular Findings, Clinical Manifestations, and Treatment Approaches in China. Front Immunol. 2022;13:926781. [Crossref]  [PubMed]  [PMC]
  14. Bucciol G, Moens L, Meyts I. Patients with primary immunodeficiencies: how are they at risk for fungal disease? Current Fungal Infection Reports. 2018;12:170-178. [Crossref]
  15. Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol. Jul 2023;23(7):433-452. [Crossref]  [PubMed]  [PMC]
  16. Blancas-Galicia L, Santos-Chávez E, Deswarte C, Mignac Q, Medina-Vera I, León-Lara X, et al. Genetic, Immunological, and Clinical Features of the First Mexican Cohort of Patients with Chronic Granulomatous Disease. J Clin Immunol. 2020;40(3):475-493. [Crossref]  [PubMed]
  17. Mahdaviani SA, Mansouri D, Jamee M, Zaki-Dizaji M, Aghdam KR, Mortaz E, et al. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical and Genetic Features of 32 Iranian Patients. J Clin Immunol. 2020;40(6):872-882. [Crossref]  [PubMed]
  18. Moratti M, Conti F, Giannella M, Ferrari S, Borghesi A. How to: Diagnose inborn errors of intrinsic and innate immunity to viral, bacterial, mycobacterial, and fungal infections. Clin Microbiol Infect. 2022;28(11):1441-1448. [Crossref]  [PubMed]
  19. Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet. 2021;12:709315. [Crossref]  [PubMed]  [PMC]
  20. Abers MS, Lionakis MS. Chronic mucocutaneous candidiasis and invasive fungal infection susceptibility. In: Sullivan KE, Stiehm ER, eds. Stiehm's Immune Deficiencies. 2nd ed. Elsevier. 2020:961-989.7.00044-2. [Crossref]
  21. Ochoa S, Constantine GM, Lionakis MS. Genetic susceptibility to fungal infection in children. Curr Opin Pediatr. 2020;32(6):780-789. [Crossref]  [PubMed]  [PMC]
  22. Yazdi M, Behnaminia N, Nafari A, Sepahvand A. Genetic Susceptibility to Fungal Infections. Adv Biomed Res. 2023;12:248. [Crossref]  [PubMed]  [PMC]
  23. Paccoud O, Warris A, Puel A, Lanternier F. Inborn errors of immunity and invasive fungal infections: presentation and management. Curr Opin Infect Dis. 2024;37(6):464-473. [Crossref]  [PubMed]
  24. Vinh DC. The molecular immunology of human susceptibility to fungal diseases: lessons from single gene defects of immunity. Expert Rev Clin Immunol. 2019;15(5):461-486. [Crossref]  [PubMed]
  25. Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev. 2024;322(1):28-52. [Crossref]  [PubMed]
  26. Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum Genet. 2020;139(67):1011-1022. [Crossref]  [PubMed]  [PMC]
  27. Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008;122(6):1043-51; quiz 1052-3. [Crossref]  [PubMed]
  28. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23-dependent IFN- immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3(30) [Crossref]  [PubMed]  [PMC]
  29. Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, et al. Human IL-23 is essential for IFN--dependent immunity to mycobacteria. Sci Immunol. 2023;8(80):eabq5204. [Crossref]
  30. Staels F, Lorenzetti F, De Keukeleere K, Willemsen M, Gerbaux M, Neumann J, et al. A Novel Homozygous Stop Mutation in IL23R Causes Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol. 2022;42(8):1638-1652. [Crossref]  [PubMed]  [PMC]
  31. Deffert C, Cachat J, Krause KH. Phagocyte NADPH oxidase, chronic granulomatous disease and mycobacterial infections. Cell Microbiol. 2014;16(8):1168-78. [Crossref]  [PubMed]
  32. Kerner G, Rosain J, Guérin A, Al-Khabaz A, Oleaga-Quintas C, Rapaport F, et al. Inherited human IFN- deficiency underlies mycobacterial disease. J Clin Invest. 2020;130(6):31583171. [Crossref]  [PubMed]  [PMC]
  33. Bohlen J, Zhou Q, Philippot Q, Ogishi M, Rinchai D, Nieminen T, et al. Human MCTS1-dependent translation of JAK2 is essential for IFN- immunity to mycobacteria. Cell. 2023;186(23):5114-5134.e27. [Crossref]  [PubMed]  [PMC]
  34. Rosain J, Kiykim A, Michev A, Kendir-Demirkol Y, Rinchai D, Peel JN, et al. Recombinant IFN-1b Treatment in a Patient with Inherited IFN- Deficiency. J Clin Immunol. 2024;44(3):62. [Crossref]  [PubMed]  [PMC]
  35. White PL, Bretagne S, Caliendo AM, Loeffler J, Patterson TF, Slavin M, et al. Aspergillus Polymerase Chain Reaction-An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin Infect Dis. 2021;72(Suppl 2):S95-s101. [Crossref]  [PubMed]
  36. Cruciani M, Mengoli C, Barnes R, Donnelly JP, Loeffler J, Jones BL, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev. 2019;9(9):Cd009551. [Crossref]  [PubMed]  [PMC]
  37. Cinetto F, Scarpa R, Rattazzi M, Agostini C. The broad spectrum of lung diseases in primary antibody deficiencies. Eur Respir Rev. 2018;27(149) [Crossref]  [PubMed]  [PMC]
  38. Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell. 2022;185(17):3086-3103. [Crossref]  [PubMed]  [PMC]
  39. Mark C, McGinn C. From culture to fungal biomarkers: the diagnostic route of fungal infections in children with primary immunodeficiencies. Current Fungal Infection Reports. 2019;13:211-220. [Crossref]
  40. Wang C, Freeman AF. Infections in Inborn Errors of STATs. Pathogens. 2024;13(11) [Crossref]  [PubMed]  [PMC]
  41. Patrawala M, Cui Y, Peng L, Fuleihan RL, Garabedian EK, Patel K, et al. Pulmonary Disease Burden in Primary Immune Deficiency Disorders: Data from USIDNET Registry. J Clin Immunol. 2020;40(2):340-349. [Crossref]  [PubMed]