FUTURE PERSPECTIVE ON RARE INTERSTITIAL LUNG DISEASES
Maria Molina Molina
Bellvitge University Hospital, Department of Respiratory, Barcelona, Spain
Molina Molina M. Future Perspective on Rare Interstitial Lung Diseases. In: Altinisik G, McCormack FX, editors. Adopting Orphan Diseases: Rare Interstitial Lung Diseases. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.269-275.
ABSTRACT
Rare and ultra-rare interstitial lung diseases (ILDs) comprise a heterogeneous group of entities. The diagnostic journey for patients with rare ILD is frequently delayed and complex. Assessment of clinical, radiological, functional and histopathological features in the multidisciplinary expert committee may be challenging due to complex imaging patterns, non-specific clinical symptoms, or inconclusive biopsies. Furthermore, research advances in these rare diseases remain limited in most cases resulting in a poor understanding of pathogenesis, natural history and drug-regulation targeting. However, several emerging trends suggest an optimistic future for patient care and research in this group.
Digital platforms enabling data sharing across international networks can facilitate centralized expert review, which is essential for ultra-rare conditions. Advances in imaging analytics, including artificial intelligence (AI)-based interpretation of high-resolution computed tomography (HRCT), promise to reduce diagnostic delays and enhance accuracy in ultra-rare ILDs. The application of high-throughput omics technologies (genomics, transcriptomics, proteomics and metabolomics) can transform the diagnostic landscape of these rare ILDs. Proper molecular characterization will facilitate and optimize diagnosis even in early stages of disease, the identification of endotypes and phenotypes, and therapeutic decisions. Ultrarare-ILD therapeutic options are frequently off-label or supported by low-level research evidence. However, precision medicine is slowly transforming the landscape of these ILDs, targeting pathway-specific origins.
Ultra-rare ILDs are entering a new era of diagnostic and therapeutic precision. The merging of molecular insights, AI-driven tools, and collaborative networking is improving diagnostic awareness and certainty and accelerating the translation of science in clinical practice. Patient priorities and access to care and clinical research remain incompletely addressed.. However, the future holds promise for achieving these unmet needs and also conducting more individualized, precise and pathogenesis-driven patient care.
Keywords: Interstitial lung diseases; Rare interstitial lung diseases; Future perspectives; Omic technologies; Molecular biology; Artificial intelligence driven tools
Kaynak Göster
Referanslar
- Bermudo G, Roman-Rodriguez M, Molina-Molina M. Interstitial lung diseases: never forget to think about it in primary care. Expert Rev Respir Med. 2024;18(1-2):9-15. [Crossref] [PubMed]
- Richeldi L, Launders N, Martinez F, Walsh SLF, Myers J, Wang B, et al. The characterization of interstitial lung disease multidisciplinary team meetings: a global study. ERJ Open Res. 2019;5(2):00209-2018. [Crossref] [PubMed] [PMC]
- Walsh SLF, Calandriello L, Silva RS, Sverzellati N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case–cohort study. Lancet Respir Med. 2018;6(11):837-45. [Crossref] [PubMed]
- Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774. [Crossref] [PubMed]
- Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA, et al. Machine learning in radiology: the new frontier in interstitial lung diseases. Lancet Digit Health. 2023;5(1):e41-e50. [Crossref] [PubMed]
- Vinta SR, Lakshmi B, Safali MA, Kumar GSC. Segmentation and classification of interstitial lung diseases base don hybrid deep learning network model. IEEE Access.2024;12:50444-58. [Crossref] [PubMed]
- Uegami W, Bychkov A, Ozasa M, Uehara K, Kataoka K, Johkoh T, et al. MIXTURE of human expertise and deep learning-developing an explainable model for predicting pathological diagnosis and survival in patients with interstitial lung disease. 2022;35(8):1083-91. [Crossref] [PubMed]
- Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, et al. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med. 2024;210(4):401-23. [Crossref] [PubMed]
- Manali ED, Griese M, Nathan N, Uzunhan Y, Borie R, Michel K, et al. Childhood interstitial lung disease survivors in adulthood: a European collaborative study. Eur Respir J. 2025;65(2):2400680. [Crossref] [PubMed] [PMC]
- Chung JH, Chelala L, Pugashetti JV, Wang JM, Adegunsoye A, Matyga AW, et al. A Deep Learning-Based Radiomic Classifier for Usual Interstitial Pneumonia. Chest. 2024;165(2):371-80. [Crossref] [PubMed] [PMC]
- Martini K, Baessler B, Bogowicz M, Blüthgen C, Mannil M, Tanadini-Lang S, et al. Applicability of radiomics in interstitial lung disease associated with systemic sclerosis: proof of concept. Eur Radiol. 2021;31(4):1987-98. [Crossref] [PubMed] [PMC]
- Vece TJ, Wambach JA, Hagood JS. Childhood rare lung disease in the 21st century: “-omics” technology advances accelerating discovery. Pediatr Pulmonol. 2020;55(7):1828- [Crossref] [PubMed] [PMC]
- Menon AA, Ghosh AJ. Unraveling mechanistic insights through interstitial lung disease multiomics. Curr Opin Pulm Med. Published online 2025 Jul 8. [Crossref] [PubMed]
- Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, et al. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology. 2024;13(1):e1485. [Crossref] [PubMed] [PMC]
- Newton CA, Oldham JM, Applegate C, Carmichael N, Powell K, Dilling D, et al.; Pulmonary Fibrosis Foundation Genetic Testing Work Group. The role of genetic testing in pulmonary fibrosis: A perspective from the pulmonary fibrosis foundation genetic testing work group. Chest.2022;162(2):394-405. [Crossref] [PubMed] [PMC]
- Garcia CK, Raghu G. Inherited interstitial lung disease. Clin Chest Med. 2004;25(3):421-33. [Crossref] [PubMed]
- Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, et al. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J. 2023;61(3):2201383. [Crossref] [PubMed]
- Alonso-González A, Véliz-Flores I, Tosco-Herrera E, González-Barbuzano S, Mendoza-Alvarez A, Galván-Fernández H, et al. A tiered strategy to identify relevant genetic variants in familial pulmonary fibrosis: a proof of concept for the clinical practice. Eur J Hum Genet. Published online January 2, 2025. [Crossref] [PubMed]
- Rindlisbacher B, Schmid C, Geiser T, Bovet C, Funke-Chambour M. Serum metabolic profiling identified a distinct metabolic signature in patients with idiopathic pulmonary fibrosis a potential biomarker role for LysoPC. Respir Res. 2018;19(1):7. [Crossref] [PubMed] [PMC]
- Oldham JM, Lee CT, Wu Z, Bowman WS, Pugashetti JV, Dao N, et al. Lung function trajectory in progressive fibrosing interstitial lung disease. Eur Respir J. 2022;59(6):2101396. [Crossref] [PubMed] [PMC]
- Lai Y, Liu X, Hou F, Han Z, E L, Su N, et al. Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images. J Xray Sci Technol. 2024;32(2):323-38. [Crossref] [PubMed]
- Gupta N, Lee HS, Ryu JH, Taveira-DaSilva AM, Beck GJ, Lee JC, et al.; NHLBI LAM Registry Group. The NHLBI LAM Registry: Prognostic Physiologic and Radiologic Biomarkers Emerge From a 15-Year Prospective Longitudinal Analysis. Chest. 2019;155(2):288-96. [Crossref] [PubMed] [PMC]
- Young L, Lee HS, Inoue Y, Moss J, Singer LG, Strange C, et al.; MILES Trial Group. Serum VEGF-D a concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of the Multicenter International Lymphangioleiomyomatosis Efficacy of Sirolimus (MILES) trial. Lancet Respir Med. 2013;1(6):445-52. [Crossref] [PubMed]
- Zhang D, Eckhardt CM, McGroder C, Benesh S, Porcelli J, Depender C, et al. Clinical Impact of Telomere Length Testing for Interstitial Lung Disease. Chest. 2024;166(5):1071- [Crossref] [PubMed] [PMC]
- Planas-Cerezales L, Arias-Salgado EG, Buendia-Roldán I, Montes-Worboys A, López CE, Vicens-Zygmunt V, et al. Predictive factors and prognostic effect of telomere shortening in pulmonary fibrosis. Respirology. 2019;24(2):146-53. [Crossref] [PubMed]
- Sellares J, Molina-Molina M. Serum biomarkers in diffuse interstitial lung diseases. Arch Broncenumol. 2020;56(6):349- [Crossref] [PubMed]
- Wijsenbeek MS, Moor CC, Johannson KA, Jackson PD, Khor YH, Kondoh Y, et al. Home monitoring in interstitial lung diseases. Lancet Respir Med. 2023;11(1):97-110. [Crossref] [PubMed]
- Maher T, NambiarAM, WellsA. The role of precision medicine in interstitial lung disease. Eur Respir J. 2022;60(3):2102146. [Crossref] [PubMed] [PMC]
- Trapnell BC, Inoue Y, Bonella F, Morgan C, Jouneau S, Bendstrup E, et al.; IMPALA Trial Investigators. Inhaled Molgramostim Therapy in Autoimmune Pulmonary Alveolar Proteinosis. N Engl J Med. 2020;383(17):1635-44.
- Montaño C, Bendstrup E, Rønnov-Jessen I, Salgado S, Sterniste G, Valipour A, et al. Long-term outcomes in five patients with autoimmune pulmonary alveolar proteinosis treated with molgramostim inhalation solution. ERJ Open Res. 2025;11(1):00567-2024. [Crossref] [PubMed] [PMC]
- Tazawa R, Ueda T, Abe M, Tatsumi K, Eda R, Kondoh S, et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl Med. 2019;381(10):923-32. [Crossref]
- McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med. 2022;205(9):1016-35. [Crossref] [PubMed]
- McCarthy C, Bonella F, O’Callaghan M, Dupin C, Alfaro T, Fally M, et al. European Respiratory Society guidelines for the diagnosis and management of pulmonary alveolar proteinosis. Eur Respir J. 2024;64(5):2400725. [Crossref] [PubMed]
- McCarthy C, Kokosi M, Bonella F. Shaping the future o fan ultra-rare disease: unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr Opin Pulm Med. 2019;25(5):450-58. [Crossref]
- Ataya A, Trapnell BC, Inoue Y, Bonella F, Wang TS, Mccarthy C, et al. The effects of molgramostim on respiratory health-related quality of life and patient-reported outcomes in patients with autoimmune pulmonary alveolar proteinosis (aPAP). Am J Respir Crit Care Med. 2025;211:A1811. [Crossref] [PubMed]
- Wasserstein M, Lachmann R, Hollak C, Arash-Kaps L, Barbato A, Gallagher RC, et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genet Med.2022;24(7):1425-36. [Crossref] [PubMed]
- McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364:1595-606. [Crossref] [PubMed]
- Gupta N, Zhang B, Zhou Y, McCormack FX, Ingledue R, Robbins N, et al. Safety and efficacy of combined resveratrol and sirolimus in lymphangioleiomyomatosis. Chest.2023;163(5):1144-55. [Crossref] [PubMed] [PMC]
- Harari S, Elia D, Caminati A, Geginat J, Luisi F, Pelosi G, et al. Nintedanib for patients with lymphangioleiomyomatosis: a pase 2, open-label, single-arm study. Lancet Respir Med. 2024;12(12):967-74. [Crossref] [PubMed]
- Molina-Molina M. The challenge of therapeutic options for patients with lymphangioleiomyomatosis. Lancet Respir Med.2024;12(12):938-39. [Crossref] [PubMed]
- Montero P, Milara J, Roger I, Cortijo J. Role of JAK/ STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int J Mol Sci. 2021;22(12):6211. [Crossref] [PubMed] [PMC]
- Doudna JA, Charpentier E. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. [Crossref] [PubMed]
- Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, Rhodes D, et al.; Genome Aggregation Database Production Team; Genome Aggregation Database Consortium; Schreiber SL, MacArthur DG. Evaluating drug targets through human loss-of-function genetic variation. Nature. 2020;581(7809):459-64. [Crossref] [PubMed] [PMC]
- Hurley K, Ozaki M, Philippot Q, Galvin L, Crosby D, Kirwan M, et al.; COST Open-ILD Group Management Committee. A roadmap to precision treatments for familial pulmonary fibrosis. EBioMedicine. 2024;104:105135. [Crossref] [PubMed] [PMC]
- Kawano-Dourado L, Molina-Molina M, Sellares J, Enghelmayer JI. The Relevance of REMAP-ILD for Ibero-American Countries: A Randomized Embedded Multifactorial Adaptive Platform (REMAP) Trial in the Field of Interstitial Lung Diseases (ILDs). Arch Bronconeumol. 2024;60(8):463-