GENETIC AND MOLECULAR DIAGNOSTIC METHODS IN THYROID DISEASES
Atıf Tekin
İstanbul Medipol University, Faculty of Medicine, Department of General Surgery, İstanbul, Türkiye
Tekin A. Genetic and Molecular Diagnostic Methods in Thyroid Diseases. Kesici U, ed. Thyroid and Parathyroid Diseases: Diagnosis, Treatment and Surgery with Current Approaches. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.163-173.
ABSTRACT
Thyroid nodules are frequently encountered, and assessing their significance can be challenging, often requiring a combination of blood tests, imaging studies, and, in some instances, tissue examination. Fine-needle aspiration biopsy is the standard approach for evaluating nodules suspected of malignancy. However, in a substantial proportion of cases (up to 30%), the results are inconclusive, necessitating further investigation.
Recent advancements in molecular testing have demonstrated significant value in both diagnosing and predicting the course of thyroid cancer. Consequently, molecular analysis has become an integral com- ponent of thyroid cancer management in numerous countries, including the United States.
Following the publication of The Cancer Genome Atlas (TCGA) research on the molecular character- istics of papillary thyroid carcinoma (PTC), which substantially reduced the proportion of “indetermi- nate” PTC cases, efforts have focused on clarifying the remaining cases that do not neatly fit into the BRAFV600E-like or RAS-like categories identified by TCGA.
Over the past decade, commercially available molecular testing platforms have undergone significant refinement as our knowledge has expanded. These platforms now encompass a broad spectrum of genetic alterations associated with thyroid cancers. Molecular reports typically include comprehensive information about the specific nodule evaluated, such as its size and cytological classification (Bethes- da category). This comprehensive information facilitates effective communication between patholo- gists and clinicians regarding nodule management.
In cases of advanced or recurrent thyroid cancer, molecular testing often plays a pivotal role in guiding personalized treatment strategies. This review examines the evolution of integrated molecular testing in thyroid nodules, emphasizing how our understanding of tumor genetics, in conjunction with histo- pathological findings, is driving the development of more precise and effective patient management approaches, particularly in the context of emerging targeted therapies.
Keywords: Thyroid nodules; Molecular testing; BRAFV600E; RAS
Kaynak Göster
Referanslar
- Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133. [Crossref] [PubMed] [PMC]
- Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022;33:27-63. [Crossref] [PubMed]
- Tirado Y, Williams MD, Hanna EY, Kaye FJ, Batsakis JG, El-Naggar AK. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin's tumors: Implications for histogenesis and biologic behavior. Genes Chromosomes Cancer 2007;46:708-715. [Crossref] [PubMed]
- Elisei R, Grande E, Kreissl MC, Leboulleux S, Puri T, Fasnacht N, Capdevila J. Current perspectives on the management of patients with advanced RET-driven thyroid cancer in Europe. Front. Oncol. 2023:13,1141314. [Crossref] [PubMed] [PMC]
- Asa SL, Giordano TJ, LiVolsi VA. Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: does follicular variant papillary thyroid carcinoma exist?. Thyroid. 2015;25(1):1-2. [Crossref] [PubMed]
- Yoo SK, Lee S, Kim SJ, et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016;12(8):e1006239. [Crossref] [PubMed] [PMC]
- Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705-715. [Crossref] [PubMed]
- Randolph GW, Sosa JA, Hao Y, et al. Preoperative Identification of Medullary Thyroid Carcinoma (MTC): Clinical Validation of the Afirma MTC RNA-Sequencing Classifier. Thyroid. 2022;32(9):1069-1076. [Crossref] [PubMed] [PMC]
- Bible KC, Kebebew E, Brierley J, et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer [published correction appears in Thyroid. 2021;31(10):1606-1607. [Crossref] [PubMed] [PMC]
- Tallini G, Tuttle RM, Ghossein RA. The History of the Follicular Variant of Papillary Thyroid Carcinoma. J Clin Endocrinol Metab. 2017;102(1):15-22. [Crossref] [PubMed]
- Fusco A, Grieco M, Santoro M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature. 1987;328(6126):170-172. [Crossref] [PubMed]
- Santoro M, Carlomagno F, Hay ID, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89(5):1517-1522. [Crossref] [PubMed] [PMC]
- Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4(2):159-164. [PubMed]
- Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4(10):1474-1479. [Crossref] [PubMed]
- Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected] [published correction appears in Science 2000 Sep1;289(5484):1474]. Science. 2000;289(5483):1357-1360. [Crossref] [PubMed]
- Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016-1023. [Crossref] [PubMed]
- Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949-954. [Crossref] [PubMed]
- Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95(8):625-627. [Crossref] [PubMed]
- Sadow PM, Heinrich MC, Corless CL, Fletcher JA, Nose V. Absence of BRAF, NRAS, KRAS, HRAS mutations, and RET/PTC gene rearrangements distinguishes dominant nodules in Hashimoto thyroiditis from papillary thyroid carcinomas. Endocr. Pathol. 2010;21:73-79. [Crossref] [PubMed]
- Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092-2098. [Crossref] [PubMed]
- Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682-1690. [Crossref] [PubMed] [PMC]
- Patel KN, Angell TE, Babiarz J, et al. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg. 2018;153(9):817-824. [Crossref] [PubMed] [PMC]
- Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. Thyroid. 2015;25(11):1217-1223. [Crossref] [PubMed] [PMC]
- Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852-E1860. [Crossref] [PubMed] [PMC]
- Wylie D, Beaudenon-Huibregtse S, Haynes BC, Giordano TJ, Labourier E. Molecular classification of thyroid lesions by combined testing for miRNA gene expression and somatic gene alterations. J Pathol Clin Res. 2016;2(2):93-103. [Crossref] [PubMed] [PMC]
- Michael CW, Kameyama K, Kitagawa W, Azar N. Rapid onsite evaluation (ROSE) for fine needle aspiration of thyroid: benefits, challenges and innovative solutions. Gland Surg. 2020;9(5):1708-1715. [Crossref] [PubMed] [PMC]
- Patel J, Klopper J, Cottrill EE. Molecular diagnostics in the evaluation of thyroid nodules: Current use and prospective opportunities. Front Endocrinol (Lausanne). 2023;14:1101410. [Crossref] [PubMed] [PMC]
- Nikiforova MN, Lepe M, Tolino LA, et al. Thyroid cytology smear slides: An untapped resource for ThyroSeq testing. Cancer Cytopathol. 2021;129(1):33-42. [Crossref] [PubMed]
- Hao Y, Duh QY, Kloos RT, Babiarz J, Harrell RM, Traweek ST, Kim SY, et al. Identification of Hurthle cell cancers: Solving a clinical challenge with genomic sequencing and a trio of machine learning algorithms. BMC Syst. Biol. 2019;13(Suppl.S2):27. [Crossref] [PubMed] [PMC]
- Ye L, Zhou X, Huang F, et al. The genetic landscape of benign thyroid nodules revealed by whole exome and transcriptome sequencing [published correction appears in Nat Commun. 2017;8:16129. [Crossref] [PubMed] [PMC]
- Guan H, Matonis D, Toraldo G, Lee SL. Clinical Significance of Thyroid-Stimulating Hormone Receptor Gene Mutations and/or Sodium-Iodine Symporter Gene Overexpression in Indeterminate Thyroid Fine Needle Biopsies. Front Endocrinol (Lausanne). 2018;9:566. [Crossref] [PubMed] [PMC]
- Nikiforova MN, Nikitski AV, Panebianco F, et al. GLIS Rearrangement is a Genomic Hallmark of Hyalinizing Trabecular Tumor of the Thyroid Gland. Thyroid. 2019;29(2):161-173. [Crossref] [PubMed] [PMC]
- Angell TE, Wirth LJ, Cabanillas ME, et al. Analytical and Clinical Validation of Expressed Variants and Fusions From the Whole Transcriptome of Thyroid FNA Samples. Front Endocrinol (Lausanne). 2019;10:612. [Crossref] [PubMed] [PMC]
- Krane JF, Cibas ES, Endo M, et al. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision-making from a fine-needle aspiration sample. Cancer Cytopathol. 2020;128(7):452-459. [Crossref] [PubMed] [PMC]
- Sistrunk JW, Shifrin A, Frager M, et al. Clinical impact of testing for mutations and microRNAs in thyroid nodules. Diagn Cytopathol. 2019;47(8):758-764. [Crossref] [PubMed]
- Finkelstein SD, Sistrunk JW, Malchoff C, et al. A Retrospective Evaluation of the Diagnostic Performance of an Interdependent Pairwise MicroRNA Expression Analysis with a Mutation Panel in Indeterminate Thyroid Nodules. Thyroid. 2022;32(11):1362-1371. [Crossref] [PubMed] [PMC]
- Corver WE, Ruano D, Weijers K, et al. Genome haploidisation with chromosome 7 retention in oncocytic follicular thyroid carcinoma. PLoS One. 2012;7(6):e38287. [Crossref] [PubMed] [PMC]
- Lee E, Terhaar S, McDaniel L, et al. Diagnostic performanceof the second-generation molecular tests in the assessment of indeterminate thyroid nodules: A systematic review and meta-analysis. Am J Otolaryngol. 2022;43(3):103394. [Crossref] [PubMed]
- Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319-328. [Crossref] [PubMed]
- Solomon BJ, Tan L, Lin JJ, et al. RET Solvent Front Mutations Mediate Acquired Resistance to Selective RET Inhibition in RET-Driven Malignancies. J Thorac Oncol. 2020;15(4):541-549. [Crossref] [PubMed] [PMC]
- Zhu VW, Madison R, Schrock AB, Ou SI. Emergence of High Level of MET Amplification as Off-Target Resistance to Selpercatinib Treatment in KIF5B-RET NSCLC. J Thorac Oncol. 2020;15(7):e124-e127. [Crossref] [PubMed]
- Waguespack SG, Drilon A, Lin JJ, et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur J Endocrinol. 2022;186(6):631-643. [Crossref] [PubMed] [PMC]
- Liu SV, Macke LA, Colton BS, et al. Response to Entrectinib in Differentiated Thyroid Cancer With a ROS1 Fusion. JCO Precis Oncol. 2017;1:PO.17.00105. [Crossref] [PubMed] [PMC]
- Falchook GS, Millward M, Hong D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. Thyroid. 2015;25(1):71-77. [Crossref] [PubMed] [PMC]
- Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028-1035. [Crossref] [PubMed]
- Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(11):4233-4238. [Crossref] [PubMed] [PMC]
- Genutis LK, Tomsic J, Bundschuh RA, et al. Microsatellite Instability Occurs in a Subset of Follicular Thyroid Cancers. Thyroid. 2019;29(4):523-529. [Crossref] [PubMed] [PMC]
- Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin Cancer Res. 2019;25(13):3753-3758. [Crossref] [PubMed]
- Janz TA, Neskey DM, Nguyen SA, Lentsch EJ. Is the incidence of anaplastic thyroid cancer increasing: A population based epidemiology study. World J Otorhinolaryngol Head Neck Surg. 2018;5(1):34-40. [Crossref] [PubMed] [PMC]
- Xu B, Fuchs T, Dogan S, et al. Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid. 2020;30(10):1505-1517. [Crossref] [PubMed] [PMC]
- Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J Clin Oncol. 2018;36(1):7-13. [Crossref] [PubMed] [PMC]
- Smith AL, Williams MD, Stewart J, et al. Utility of the BRAF p.V600E immunoperoxidase stain in FNA direct smears and cell block preparations from patients with thyroid carcinoma. Cancer Cytopathol. 2018;126(6):406-413. [Crossref] [PubMed]
- Gild, M.L.; Bullock, M.; Tsang, V.; Clifton-Bligh, R.J.; Robinson, B.G.; Wirth, L.J. Challenges and Strategies to Combat Resistance Mechanisms in Thyroid Cancer Therapeutics. Thyroid 2023, 33, 682-690. [Crossref] [PubMed]
- Ceolin L, Duval MADS, Benini AF, Ferreira CV, Maia AL. Medullary thyroid carcinoma beyond surgery: advances, challenges, and perspectives. Endocr Relat Cancer. 2019;26(9):R499-R518. [Crossref] [PubMed]
- Alzumaili B, Xu B, Spanheimer PM, et al. Grading of medullary thyroid carcinoma on the basis of tumor necrosis and high mitotic rate is an independent predictor of poor outcome. Mod Pathol. 2020;33(9):1690-1701. [Crossref] [PubMed] [PMC]
- Boichard A, Croux L, Al Ghuzlan A, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97(10):E2031-E2035. [Crossref] [PubMed] [PMC]
- Moura MM, Cavaco BM, Pinto AE, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009;100(11):1777-1783. [Crossref] [PubMed] [PMC]
- Degrauwe N, Sosa JA, Roman S, Deshpande HA. Vandetanib for the treatment of metastatic medullary thyroid cancer. Clin Med Insights Oncol. 2012;6:243-252. [Crossref] [PubMed] [PMC]
- Frisco NA, Gunn AH, Thomas SM, Stang MT, Scheri RP, Kazaure HS. Medullary thyroid cancer with RET V804M mutation: more indolent than expected?. Surgery. 2023;173(1):260-267. [Crossref] [PubMed]
- Subbiah V, Hu MI, Wirth LJ, et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study [published correction appears in Lancet Diabetes Endocrinol. 2021;9(10):e4. [Crossref] [PubMed]