GENETIC AND MOLECULAR INDICATORS IN PARATHYROID DISEASES

Emine Berrin Yüksel

Karamanoğlu Mehmetbey University, Faculty of Medicine, Department of Medical Genetics, Karaman, Türkiye

Yüksel EB. Genetic and Molecular Indicators in Parathyroid Diseases. Kesici U, ed. Thyroid and Parathyroid Diseases: Diagnosis, Treatment and Surgery with Current Approaches. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.175-185.

ABSTRACT

This book chapter delves into the genetic and molecular foundations of parathyroid diseases, high- lighting advancements in diagnostic and therapeutic approaches. Parathyroid disorders, such as hyper- parathyroidism, hypoparathyroidism, and parathyroid carcinoma, disrupt calcium balance, leading to systemic effects like osteoporosis, nephrolithiasis, and cardiovascular complications. Genetic muta- tions, notably in MEN1, CDC73, and CASR, play pivotal roles in the pathogenesis of these conditions. Furthermore, epigenetic changes, including DNA methylation and histone modifications, contribute to tumor development, emphasizing the complexity of these disorders.

Advances in next-generation sequencing (NGS) have significantly improved the diagnosis and man- agement of parathyroid diseases. NGS enables comprehensive genetic profiling, distinguishing hered- itary syndromes from sporadic cases. This differentiation is critical for clinical decisions, particularly in surgical interventions. For example, identifying MEN1 mutations informs strategies for managing multi-glandular disease, while distinguishing familial hypocalciuric hypercalcemia (FHH) through CASR mutations avoids unnecessary surgeries.

The molecular pathways underlying parathyroid diseases provide insights into therapeutic targets. The calcium-sensing receptor (CaSR) pathway regulates PTH secretion, and its dysfunction is implicated in conditions like FHH and autosomal dominant hypocalcemia. Aberrant Wnt/b-catenin signaling and PI3K/Akt pathway activation drive tumor progression, highlighting potential targets for novel ther- apies. Additionally, the interplay of genetics and epigenetics, such as CDC73 hypermethylation and miRNA dysregulation, underscores the need for advanced molecular diagnostics.

Emerging biomarkers, including miRNAs and noncoding RNAs, enhance diagnostic precision and prognostication. For instance, miR-126 differentiates parathyroid carcinomas from adenomas. Genetic testing for key mutations, such as those in CDC73 and RET, not only facilitates early detection but also guides personalized management strategies. These approaches ensure targeted therapies for hereditary and sporadic cases, improving patient outcomes.

The integration of genetic findings into clinical practice has transformed the management of parathy- roid disorders. Multidisciplinary collaboration among endocrinologists, geneticists, and surgeons en- ables personalized care. The chapter emphasizes the potential of precision medicine, driven by AI and multi-omics approaches, to advance diagnostics and therapies. Despite these advancements, challenges remain, including accessibility to genetic testing, cost barriers, and ethical concerns. Overcoming these obstacles requires global collaboration and investment in research.

In conclusion, this chapter underscores the importance of genetic and molecular research in improving the understanding and management of parathyroid diseases. Ongoing advancements promise to refine diagnostics, optimize therapies, and pave the way for precision medicine in endocrine disorders.

Keywords: Parathyroid diseases; Mutation; Epigenetic; Precision medicine; Next generation sequencing

Referanslar

  1. Sell J, Ramirez S, Partin M. Parathyroid disorders. Am Fam Physician. 2022;105(3):289-298. [Link]
  2. Minisola S, Arnold A, Belaya Z, Brandi ML, Clarke BL, Hannan FM, et al. Epidemiology, pathophysiology, and genetics of primary hyperparathyroidism. J Bone Miner Res. 2022;37(11):2315-2329. [Crossref]  [PubMed]  [PMC]
  3. Marini F, Giusti F, Iantomasi T, Brandi ML. Parathyroid Tumors: Molecular Signatures. Int J Mol Sci. 2021;22(20):11206.doi:10.3390/ijms222011206. [Crossref]  [PubMed]  [PMC]
  4. Marini F, Giusti F, Palmini G, Aurilia C, Donati S, Brandi ML. Parathyroid carcinoma: molecular therapeutic targets. Endocrine. 2023;80(3):371-380. [Crossref]  [PubMed]
  5. Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-generation sequencing technology: current trends and advancements. Biology (Basel). 2023;12(7):997. [Crossref]  [PubMed]  [PMC]
  6. Jha S, Simonds WF. Molecular and clinical spectrum of primary hyperparathyroidism. Endocr Rev. 2023;44(5):779-818. [Crossref]  [PubMed]  [PMC]
  7. Brewer K, Costa-Guda J, Arnold A. Molecular genetic insights into sporadic primary hyperparathyroidism. Endocr Relat Cancer. 2019;26(2):R53-R72. [Crossref]  [PubMed]
  8. Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int. 2008;74(3):276-288. [Crossref]  [PubMed]
  9. Zhang LX, Zhang B, Liu XY, Wang ZM, Qi P, Zhang TY, Zhang Q. Advances in the treatment of secondary and tertiary hyperparathyroidism. Front Endocrinol (Lausanne). 2022;13:1059828. [Crossref]  [PubMed]  [PMC]
  10. Mannstadt M, Cianferotti L, Gafni RI, Giusti F, Kemp EH, Koch CA, et al. Hypoparathyroidism: Genetics and Diagnosis. J Bone Miner Res. 2022;37(12):2615-2629. [Crossref]  [PubMed]
  11. Marini F, Giusti F, Palmini G, Perigli G, Santoro R, Brandi ML. Genetics and epigenetics of parathyroid carcinoma. Front Endocrinol (Lausanne). 2022;13:834362. [Crossref]  [PubMed]  [PMC]
  12. Brunetti A, Cosso R, Vescini F, Falchetti A. Molecular Pathophysiology of Parathyroid Tumorigenesis-The Lesson from a Rare Disease: The "MEN1 Model." Int J Mol Sci. 2024;25(21):11586. [Crossref]  [PubMed]  [PMC]
  13. Zheng HC, Xue H, Zhang CY. The roles of the tumor suppressor parafibromin in cancer. Front Cell Dev Biol. 2022;10:1006400. [Crossref]  [PubMed]  [PMC]
  14. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab. 2010 Jun;24(3):355- 70. [Crossref]  [PubMed]
  15. Blau JE, Simonds WF. Familial hyperparathyroidism. Front Endocrinol (Lausanne). 2021;12:623667. [Crossref]
  16. Gheorghe AM, Sima OC, Florescu AF, Ciuche A, Nistor C, Sandru F, et al. Insights into hyperparathyroidism-jaw tumour syndrome: From endocrine acumen to the spectrum of CDC73 gene and parafibromin-deficient tumours. Int J Mol Sci. 2024;25(4):2301. [Crossref]  [PubMed]  [PMC]
  17. Hu X, Guan J, Wang Y, Shi S, Song C, Li ZP,et al. A narrative review of multiple endocrine neoplasia syndromes: genetics, clinical features, imaging findings, and diagnosis. Ann Transl Med. 2021;9(11):doi:10.21037/atm-21-1165. [Link]
  18. Vahe C, Benomar K, Espiard S, Coppin L, Jannin A, Odou MF,et al. Diseases associated with calcium-sensing receptor. Orphanet J Rare Dis. 2017;12:19. [Crossref]  [PubMed]  [PMC]
  19. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3. [Crossref]  [PubMed]  [PMC]
  20. Ma L, Wang X, Jia T, Wei W, Chua MS, So S. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget.2015;6(28):25390-25401. [Crossref]  [PubMed]  [PMC]
  21. Kilav-Levin R, Hassan A, Nechama M, Shilo V, Silver J, Ben-Dov IZ, et al. Post-transcriptional mechanisms regulating parathyroid hormone gene expression in secondary hyperparathyroidism. FEBS J. 2020;287(14):2903-2913. [Crossref]  [PubMed]
  22. Marini F, Giusti F, Palmini G, Aurilia C, Donati S, Brandi ML. Parathyroid carcinoma: Update on pathogenesis and therapy. Endocrines. 2023;4(1):205-235. [Crossref]
  23. Conti de Freitas LC, Castilho RM, Squarize CH. Histone modification on parathyroid tumors: A review of epigenetics. Int J Mol Sci. 2022;23(10):5378. [Crossref]  [PubMed]  [PMC]
  24. Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, et al.The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers (Basel). 2021;13(16):3949. [Crossref]  [PubMed]  [PMC]
  25. Juhlin CC, Erickson LA. Genomics and epigenomics in parathyroid neoplasia: from bench to surgical pathology practice. Endocr Pathol. 2021;32(1):17-34. [Crossref]  [PubMed]  [PMC]
  26. Hendy GN, D'Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat. 2000;16(4):281-296. [Crossref]  [PubMed]
  27. Jo SY, Hong N, Lee S, Jeong JJ, Won J, Park J, et al. Genomic and transcriptomic profiling reveal molecular characteristics of parathyroid carcinoma. Exp Mol Med. 2023;55:886-897. [Crossref]  [PubMed]  [PMC]
  28. Alobuia W, Annes J, Kebebew E. Genetic testing in endocrine surgery: opportunities for precision surgery. Surgery. 2020;168(2):328-334. [Crossref]  [PubMed]