Genetic Evaluation of Metabolic Myopathies

cocukmetabolizma-5-1-2024

Ekin ÖZSAYDI AKTAŞOĞLUa , Filiz Başak CENGİZ ERGİNb , Aslı İNCİb

aUniversity of Health Sciences Ankara Dr. Sami Child Health and Disease Training and Research Hospital, Department of Pediatric Metabolism Diseases, Ankara, Türkiye
bGazi University Faculty of Medicine, Department of Pediatric Metabolism Diseases, Ankara, Türkiye

ABSTRACT
Metabolic myopathies are characterized by a deficiency of enzymes or proteins that are required for muscle energy metabolism, and most of them are inherited autosomal recessively. Glycogen metabolism disorders, fatty acid oxidation defects, and mitochondrial disorders are included in metabolic myopathies. Patients can present with exercise intolerance, fatigue, muscle weakness, rhabdomyolysis, myoglobinuria/pigmenturia, and in addition to muscle involvement, symptoms and signs related to liver, heart, and neurological involvement can also be seen. With the increasing use of next-generation sequencing (NGS) in clinical practice, in suspected patients, genetic evaluation is preferred in addition to other diagnostic approaches.
Keywords: Metabolic myopathies; genetic evaluation; sanger sequencing; next-generation DNA sequencing

Referanslar

  1. Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol. 2018;18(1):14-26. [Crossref]  [PubMed]
  2. Urtizberea JA, Severa G, Malfatti E. Metabolic Myopathies in the Era of Next-Generation Sequencing. Genes (Basel). 2023;14(5):954. [Crossref]  [PubMed]  [PMC]
  3. Nagappa M, Narayanappa G. Approach to the diagnosis of metabolic myopathies. Indian J Pathol Microbiol. 2022;65(Supplement):S277-90.
  4. Ng KWP, Chin H-L, Chin AXY, Goh DL-M. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol. 2022;13. [Crossref]  [PubMed]  [PMC]
  5. Kerr M, Hume S, Omar F, Koo D, Barnes H, Khan M, et al. MITO-FIND: A study in 390 patients to determine a diagnostic strategy for mitochondrial disease. Mol Genet Metab. 2020;131(1-2):66-82. [Crossref]  [PubMed]
  6. Tarnopolsky MA. Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics. 2018;15(4):915-27. [Crossref]  [PubMed]  [PMC]
  7. Kishnani PS, Steiner RD, Bali D, Berger K, Byrne BJ, Case LE, et al. Pompe disease diagnosis and management guideline. Genet Med. 2006;8(5):26-88. [Crossref]  [PubMed]  [PMC]
  8. Hers H. α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe's disease). Biochem J. 1963;86(1):11-6. [Crossref]  [PubMed]  [PMC]
  9. Kishnani PS, Beckemeyer AA. New therapeutic approaches for Pompe disease: enzyme replacement therapy and beyond. Pediatr Endocrinol Rev. 2014;12 Suppl 1:114-24.
  10. Davison JE. Advances in diagnosis and management of Pompe disease. J Mother Child. 2020;24(2):3-8.
  11. Peruzzo P, Pavan E, Dardis A. Molecular genetics of Pompe disease: a comprehensive overview. Ann Transl Med. 2019;7(13):278. [Crossref]  [PubMed]  [PMC]
  12. Mc Ardle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10(1):13-35.
  13. Tarnopolsky MA. Metabolic Myopathies. Continuum (Minneap Minn). 2022;28(6):1752-77. [Crossref]  [PubMed]
  14. Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst Rev. 2014. [Crossref]  [PubMed]  [PMC]
  15. Løkken N, Voermans NC, Andersen LK, Karazi W, Reason SL, Zweers H, et al. Patient-Reported Experiences with a Low-Carbohydrate Ketogenic Diet: An International Survey in Patients with McArdle Disease. Nutrients. 2023;15(4):843. [Crossref]  [PubMed]  [PMC]
  16. Villarreal-Salazar M, Brull A, Nogales-Gadea G, Andreu AL, Martín MA, Arenas J, et al. Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies. Genes (Basel). 2021;13(1):74. [Crossref]  [PubMed]  [PMC]
  17. Santalla A, Nogales-Gadea G, Encinar AB, Vieitez I, González-Quintana A, Serrano-Lorenzo P, et al. Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics. 2017;18(Suppl 8):819. [Crossref]  [PubMed]  [PMC]
  18. Llavero F, Arrazola Sastre A, Luque Montoro M, Gálvez P, Lacerda HM, Parada LA, et al. McArdle Disease: New Insights into Its Underlying Molecular Mechanisms. Int J Mol Sci. 2019;20(23):5919. [Crossref]  [PubMed]  [PMC]
  19. Deschauer M, Morgenroth A, Joshi PR, Gläser D, Chinnery PF, Aasly J, et al. Analysis of spectrum and frequencies of mutations in McArdle disease. Identification of 13 novel mutations. J Neurol. 2007;254(6):797-802. [Crossref]  [PubMed]
  20. Echaniz-Laguna A, Akman HO, Mohr M, Tranchant C, Talmant-Verbist V, Rolland MO, et al. Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord. 2010;20(2):125-7. [Crossref]  [PubMed]
  21. Herbert M, Goldstein JL, Rehder C, Austin S, Kishnani PS, Bali DS. Phosphorylase Kinase Deficiency. 2011 May 31 [updated 2018 Nov 1]. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al, eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023.
  22. Kumar TV, Bhat M, Narayanachar SG, Narayan V, Srikanth AK, Anikar S, et al. Molecular and clinical profiling in a large cohort of Asian Indians with glycogen storage disorders. PLoS One. 2022;17(7):e0270373. [Crossref]  [PubMed]  [PMC]
  23. Stemmerik MG, Madsen KL, Laforêt P, Buch AE, Vissing J. Muscle glycogen synthesis and breakdown are both impaired in glycogenin-1 deficiency. Neurology. 2017;89(24):2491-4. [Crossref]  [PubMed]
  24. Malfatti E, Nilsson J, Hedberg-Oldfors C, Hernandez-Lain A, Michel F, Dominguez-Gonzalez C, et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol. 2014;76(6):891-8. [Crossref]  [PubMed]  [PMC]
  25. Desikan M, Scalco RS, Manole A, Gardiner AR, Schapira AH, Lachmann RH, et al. GYG1 causing progressive limb girdle myopathy with onset during teenage years (polyglucosan body myopathy 2). Neuromuscul Disord. 2018;28(4):346-9. [Crossref]  [PubMed]
  26. Cameron JM, Levandovskiy V, MacKay N, Utgikar R, Ackerley C, Chiasson D, et al. Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab. 2009;98(4):378-82. [Crossref]  [PubMed]
  27. Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci. 2023;24(10):8632. [Crossref]  [PubMed]  [PMC]
  28. Massese M, Tagliaferri F, Dionisi-Vici C, Maiorana A. Glycogen storage diseases with liver involvement: a literature review of GSD type 0, IV, VI, IX and XI. Orphanet J Rare Dis. 2022;17(1):241. [Crossref]  [PubMed]  [PMC]
  29. Szymańska E, Szymańska S, Truszkowska G, Ciara E, Pronicki M, Shin YS, et al. Variable clinical presentation of glycogen storage disease type IV: from severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch Med Sci. 2018;1:237-47. [Crossref]  [PubMed]  [PMC]
  30. Bruno C, DiRocco M, Lamba LD, Bado M, Marino C, Tsujino S, et al. A novel missense mutation in the glycogen branching enzyme gene in a child with myopathy and hepatopathy. Neuromuscul Disord. 1999;9(6-7):403-7. [Crossref]  [PubMed]
  31. Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, et al. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab. 2023;138(3):107525. [Crossref]  [PubMed]
  32. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62(1):82-6. [Crossref]  [PubMed]
  33. Similä ME, Auranen M, Piirilä PL. Beneficial Effects of Ketogenic Diet on Phosphofructokinase Deficiency (Glycogen Storage Disease Type VII). Front Neurol. 2020;11. [Crossref]  [PubMed]  [PMC]
  34. Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A, Jann S, et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001;50(2):202-7. [Crossref]  [PubMed]
  35. Musumeci O, Brady S, Rodolico C, Ciranni A, Montagnese F, Aguennouz M, et al. Recurrent rhabdomyolysis due to muscle β-enolase deficiency: very rare or underestimated? J Neurol. 2014;261(12):2424-8. [Crossref]  [PubMed]
  36. Tarnopolsky MA. Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics. 2018;15(4):915-27. [Crossref]  [PubMed]  [PMC]
  37. Altassan R, Radenkovic S, Edmondson AC, Barone R, Brasil S, Cechova A, et al. International consensus guidelines for phosphoglucomutase 1 deficiency (PGM1‐CDG): Diagnosis, follow‐up, and management. J Inherit Metab Dis. 2021;44(1):148-63. [Crossref]  [PubMed]  [PMC]
  38. Adler M, Shieh PB. Metabolic Myopathies. Semin Neurol. 2015;35(4):385-97. [Crossref]  [PubMed]
  39. Behlmann AM, Goyal NA, Yang X, Chen PH, Ankala A. A Hemizygous Deletion Within the PGK1 Gene in Males with PGK1 Deficiency. JIMD Rep. 2019;45:105-110. [Crossref]  [PubMed]  [PMC]
  40. Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet Part C Semin Med Genet. 2006;142C(2):77-85. [Crossref]  [PubMed]  [PMC]
  41. Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7(1):68. [Crossref]  [PubMed]  [PMC]
  42. Frigeni M, Balakrishnan B, Yin X, Calderon FRO, Mao R, Pasquali M, et al. Functional and molecular studies in primary carnitine deficiency. Hum Mutat. 2017;38(12):1684-99. [Crossref]  [PubMed]  [PMC]
  43. Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25(5-6):495-520. [Crossref]  [PubMed]
  44. Pennisi E, Garibaldi M, Antonini G. Lipid Myopathies. J Clin Med. 2018;7(12):472. [Crossref]  [PubMed]  [PMC]
  45. Prasun P. Multiple Acyl-CoA Dehydrogenase Deficiency. GeneReviews®. 1993.
  46. Auranen M, Paetau A, Piirilä P, Pohju A, Salmi T, Lamminen A, et al. Patient with multiple acyl-CoA dehydrogenation deficiency disease and FLAD1 mutations benefits from riboflavin therapy. Neuromuscul Disord. 2017;27(6):581-4. [Crossref]  [PubMed]
  47. Cakmak E, Bagci G. Chanarin‐Dorfman Syndrome: A comprehensive review. Liver Int. 2021;41(5):905-14. [Crossref]  [PubMed]
  48. Tian Y, Wang S, Wang F, Yi L, Dong M, Huang X. Late onset of neutral lipid storage disease due to a rare PNPLA2 mutation in a patient with myopathy and cardiomyopathy. Chin Med J (Engl). 2022;135(19):2389-91. [Crossref]  [PubMed]  [PMC]
  49. de Barcelos IP, Emmanuele V, Hirano M. Advances in primary mitochondrial myopathies. Curr Opin Neurol. 2019;32(5):715-21. [Crossref]  [PubMed]  [PMC]
  50. Ahmed ST, Craven L, Russell OM, Turnbull DM, Vincent AE. Diagnosis and Treatment of Mitochondrial Myopathies. Neurotherapeutics. 2018;15(4):943-53. [Crossref]  [PubMed]  [PMC]