Glioma Microenvironment and Immunotherapy: A Revolution in Glioma Treatment?

Recep UYARa , Ömür BEŞBİNARa , Açelya YILMAZER AKTUNAb

aAnkara University Stem Cell Institute, Ankara, Türkiye
bAnkara University Faculty of Engineering, Department of Biomedical Engineering, Ankara, Türkiye

Uyar R, Beşbinar Ö, Yılmazer Aktuna A. Glioma microenvironment and immunotherapy: A revolu- tion in glioma treatment? In: Uğur HÇ, Bayatlı E, eds. Glial Tumours: Expectations from Today-Pro- mises of the Future. 1st ed. Ankara: Türkiye Kli- nikleri; 2024. p.69-75.

ABSTRACT

Gliomas are brain tumors characterized by aggressive behavior and poor prognosis. Understanding the tumor microenvironment (TME) is crucial for developing effective treatments. TME is composed of a wide variety of cellular components, including immune cells, endothelial cells, and fibroblasts associated with cancer. These different cell types interact with the tumor, con- tributing to its growth, immune evasion, and overall progression. These cells interact dynamically with glioma cells, contributing to tumor growth, immune evasion, and resistance to therapies. These interactions are organized to promote tumor growth, invasion, and resistance to therapy. Recent ad- vancements in immunotherapy have reached exciting points in glioma treatment. Immunotherapeu- tic approaches, such as immune checkpoint inhibitors, CAR-T cell therapy, and cancer vaccines, aim to modulate the immune response against glioma cells. Detailed profiling of the immune and other cells within the TME is essential for developing these therapies. These strategies have demon- strated encouraging outcomes in both preclinical and clinical trials, showing potential for advanc- ing cancer treatments and improving patient survival rates. This review will discuss the complex interactions within the glioma microenvironment and the potential of immunotherapy to overcome these barriers.

Keywords: Glioblastoma; immunology; tumor microenvironment; immunotherapy; cancer

Referanslar

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-20. [Crossref]  [PubMed]
  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-96. [Crossref]  [PubMed]
  3. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-8. [Crossref]  [PubMed]  [PMC]
  4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. [Crossref]  [PubMed]  [PMC]
  5. Chemotherapy induces clonal selection of TP53 mutations. Nat Rev Clin Oncol. 2014;12:64. [Crossref]  [PubMed]
  6. Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842-50. [Crossref]  [PubMed]
  7. Batchelor TT, Reardon DA, de Groot JF, Wick W, Weller M. Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin Cancer Res. 2014;20(22):5612-9. [Crossref]  [PubMed]  [PMC]
  8. Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425-36. [Crossref]  [PubMed]
  9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60. [Crossref]  [PubMed]
  10. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016; 19(1):20-7. [Crossref]  [PubMed]  [PMC]
  11. Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery. 2012;71(2):201-22; discussion 222-3. [Crossref]  [PubMed]
  12. Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100-9. [Crossref]  [PubMed]
  13. Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: Microenvironment and Niche Concept. Cancers (Basel). 2018;11(1):5. [Crossref]  [PubMed]  [PMC]
  14. Bikfalvi A, da Costa CA, Avril T, Barnier JV, Bauchet L, Brisson L, et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer. 2023;9(1):9-27. [Crossref]  [PubMed]
  15. Ravi VM, Neidert N, Will P, Joseph K, Maier JP, Kückelhaus J, et al. T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nat Commun. 2022;13(1):925. [Crossref]  [PubMed]  [PMC]
  16. Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol. 2021;9:740827. [Crossref]  [PubMed]  [PMC]
  17. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610-22. [Crossref]  [PubMed]
  18. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408. [Crossref]  [PubMed]  [PMC]
  19. Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes Dos Santos C, et al. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol. 2023;14(4):138-59. [Crossref]  [PubMed]  [PMC]
  20. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683-710. [Crossref]  [PubMed]
  21. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-6. [Crossref]  [PubMed]  [PMC]
  22. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-8. [PubMed]
  23. Quail DF, Joyce JA. The Microenvironmental Landscape of Brain Tumors. Cancer Cell. 2017;31(3):326-41. [Crossref]  [PubMed]  [PMC]
  24. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395-406. [Crossref]  [PubMed]  [PMC]
  25. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31(1):146-55. [Crossref]  [PubMed]
  26. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264-72. [Crossref]  [PubMed]  [PMC]
  27. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1(2):e85841. [Crossref]  [PubMed]  [PMC]
  28. Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, et al. Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Rep. 2016;17(9):2445-59. [Crossref]  [PubMed]  [PMC]
  29. Woroniecka K, Chongsathidkiet P, Rhodin K, Kemeny H, Dechant C, Farber SH, et al. T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Clin Cancer Res. 2018;24(17):4175-86. [Crossref]  [PubMed]  [PMC]
  30. Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, et al. Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Cancer Immunol Res. 2016;4(2):124-35. [Crossref]  [PubMed]
  31. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016;375(26):2561-9. [Crossref]  [PubMed]  [PMC]
  32. Mougiakakos D, Johansson CC, Kiessling R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood. 2009;113(15):3542-5. [Crossref]  [PubMed]
  33. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503-10. [Crossref]  [PubMed]
  34. Alvarez-Breckenridge CA, Yu J, Price R, Wojton J, Pradarelli J, Mao H, et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat Med. 2012;18(12):1827-34. [Crossref]  [PubMed]  [PMC]
  35. Waldmann T. The contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for the immunotherapy of rheumatological diseases. Arthritis Res. 2002;4 Suppl 3(Suppl 3):S161-7. [PubMed]
  36. André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175(7):1731-43.e13. [Crossref]  [PubMed]  [PMC]
  37. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8): 3051-7. [Crossref]  [PubMed]
  38. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545-53. [Crossref]  [PubMed]  [PMC]
  39. Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Bossman SA, Ter Laan M, et al. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Neuro Oncol. 2016;18(9):1253-64. [Crossref]  [PubMed]  [PMC]
  40. Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol. 2024;17(1):13. [Crossref]  [PubMed]  [PMC]
  41. Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol. 2012;22(4):307-18. [Crossref]  [PubMed]
  42. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12): 2691-702. [Crossref]  [PubMed]  [PMC]
  43. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006;66(18):9299-307. [Crossref]  [PubMed]  [PMC]
  44. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016;375(26):2561-9. [Crossref]  [PubMed]  [PMC]
  45. Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting glioblastoma through nano- and micro-particle-mediated immune modulation. Bioorg Med Chem. 2022;72:116913. [Crossref]  [PubMed]