Gut and Inflammation

biyomedikalozel5-1-24kapak

Göksel BENGİa , Nilay DANIŞa , Müjde SOYTÜRKa
aDokuz Eylül University Faculty of Medicine, Department of Gastroenterology, İzmir, Türkiye

Bengi G, Danış N, Soytürk M. Gut and inflammation. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.129-38.

Article Language: EN

ABSTRACT
Proinflammatory and anti-inflammatory cytokines produced by various cells of the mucosal immune system in response to various environmental factors, primarily to intestinal microflora, play a fundamental role in the pathogenesis of IBD. Numerous genetic factors that regulate epithelial function or inflammatory response pathways interact with each other to determine mechanism and the extent of response to be generated in the cells of the mucosal immune system against these external factors. Dendritic cells, neutrophils, macrophages, NK cells, intestinal epithelial cells, and innate and adaptive lymphoid cells (Th1, Th2, Th17), which are the components of the mucosal immune system acting under the influence of environmental and genetic factors, produce cytokines that cause mucosal inflammation. As a result, the balance between proinflammatory and anti-inflammatory cytokines is disrupted, leading to inflammation, development of inflammatory bowel disease (IBD), and persistence of the mucosal inflammation. The understanding of the pathogenesis of IBD has come a long way in recent years. The mechanisms associated with IBD discovered till date and those to be discovered in the future offer therapeutic promise.

Keywords: Inflammation; inflammatory bowel disease; celiac disease; microscopic colitis

Referanslar

  1. Weimers P, Munkholm P. The Natural History of IBD: Lessons Learned. Curr Treat Options Gastroenterol. 2018;16(1):101-11. [Crossref]  [PubMed]
  2. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet [Internet]. 2007;369(9573):1641-57. [Crossref]  [PubMed]
  3. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307-17. [Crossref]  [PubMed]  [PMC]
  4. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Färkkilä M, Kontula K. Family and twin studies in inflammatory bowel disease. World J Gastroenterol. 2006;12(23):3668-72. [Crossref]  [PubMed]  [PMC]
  5. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sørensen TI, Binder V. Familial occurrence of inflammatory bowel disease. N Engl J Med. 1991;324(2):84-8. [Crossref]  [PubMed]
  6. Satsangi J, Grootscholten C, Holt H, Jewell DP. Clinical patterns of familial inflammatory bowel disease. Gut. 1996;38(5):738-41. [Crossref]  [PubMed]  [PMC]
  7. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119-24. [Crossref]  [PubMed]  [PMC]
  8. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001;411(6837):603-6. [Crossref]  [PubMed]
  9. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: Implications for Crohn's disease. J Biol Chem. 2003;278(8):5509-12. [Crossref]  [PubMed]
  10. Shaw MH, Kamada N, Warner N, Kim YG, Nuñez G. The ever-expanding function of NOD2: Autophagy, viral recognition, and T cell activation. Trends Immunol. 2011;32(2):73-9. [Crossref]  [PubMed]  [PMC]
  11. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 2010;16(1):90-7. [Crossref]  [PubMed]
  12. Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim Y, Magalhães JG, et al. Articles Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2009;11(1):55-62. [Crossref]  [PubMed]
  13. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol. 2009;10(10):1073-80. [Crossref]  [PubMed]  [PMC]
  14. Noguchi E, Homma Y, Kang X, Netea MG, Ma X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol. 2009;10(5):471-9. [Crossref]  [PubMed]  [PMC]
  15. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39(2):207-11. [Crossref]  [PubMed]
  16. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat Genet. 2007;39(7):830-2. [Crossref]  [PubMed]  [PMC]
  17. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323-35. [Crossref]  [PubMed]  [PMC]
  18. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461-3. [Crossref]  [PubMed]  [PMC]
  19. Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: New immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 2009;58(8):1152-67. [Crossref]  [PubMed]
  20. Dolan KT, Chang EB. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol Nutr Food Res. 2017;61(1):10.1002/mnfr.201600129. [Crossref]  [PubMed]  [PMC]
  21. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut. 2011;60(5):631-7. [Crossref]  [PubMed]
  22. Martinez C, Antolin M, Santos J, Torrejon A, Casellas F, Borruel N, et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol. 2008;103(3):643-8. [Crossref]  [PubMed]
  23. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780-5. [Crossref]  [PubMed]  [PMC]
  24. Barnich N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli and Crohn's disease. Curr Opin Gastroenterol. 2007;23(1):16-20. [Crossref]  [PubMed]
  25. Cobrin GM, Abreu MT. Defects in mucosal immunity leading to Crohn's disease. Immunol Rev. 2005;206(1):277-95. [Crossref]  [PubMed]
  26. Targan SR, Karp LC. Defects in mucosal immunity leading to ulcerative colitis. Immunol Rev. 2005;206:296-305. [Crossref]  [PubMed]
  27. Geremia A, Jewell DP. The IL-23/IL-17 pathway in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol. 2012;6(2):223-37. [Crossref]  [PubMed]
  28. Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 2014;20(1):91-9. [Crossref]  [PubMed]  [PMC]
  29. Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology. 2011;140(6):1738-47. [Crossref]  [PubMed]  [PMC]
  30. Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):362-81. [Crossref]  [PubMed]
  31. Shih DQ, Michelsen KS, Barrett RJ, Biener-Ramanujan E, Gonsky R, Zhang X, et al. Insights into TL1A and IBD pathogenesis. Adv Exp Med Biol. 2011;691(6):279-88. [Crossref]  [PubMed]
  32. Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR, Fellermann K, et al. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm Bowel Dis. 2003;9(4):215-23. [Crossref]  [PubMed]
  33. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485-517. [Crossref]  [PubMed]
  34. Breese E, Braegger CP, Corrigan CJ, Walker-Smith JA, MacDonald TT. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993;78(1):127-31.
  35. Di Sabatino A, Biancheri P, Rovedatti L, MacDonald TT, Corazza GR. New pathogenic paradigms in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(2):368-71. [Crossref]  [PubMed]
  36. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8(9):967-74. [Crossref]  [PubMed]  [PMC]
  37. Schirbel A, Fiocchi C. Inflammatory bowel disease: Established and evolving considerations on its etiopathogenesis and therapy. J Dig Dis. 2010;11(5):266-76. [Crossref]  [PubMed]
  38. Meenan J, Spaans J, Grool TA, Pals ST, Tytgat GN, van Deventer SJ. Altered expression of alpha 4 beta 7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut. 1997;40(2):241-6. [Crossref]  [PubMed]  [PMC]
  39. Pardi DS. Diagnosis and management of microscopic colitis. Am J Gastroenterol. 2017;112:78-85. [Crossref]  [PubMed]
  40. Olesen M, Eriksson S, Bohr J, Järnerot G, Tysk C. Microscopic colitis: a common diarrhoeal disease. An epidemiological study in Orebro, Sweden, 1993-1998. Gut. 2004;53(3):346-50. [Crossref]  [PubMed]  [PMC]
  41. Bohr J, Tysk C, Eriksson S, Abrahamsson H, Järnerot G. Collagenous colitis: a retrospective study of clinical presentation and treatment in 163 patients. Gut. 1996;39(6):846-51. [Crossref]  [PubMed]  [PMC]
  42. Pardi DS, Ramnath VR, Loftus EV Jr, Tremaine WJ, Sandborn WJ. Lymphocytic colitis: clinical features, treatment, and outcomes. Am J Gastroenterol. 2002;97(11):2829-33. [Crossref]  [PubMed]
  43. Chande N, Driman DK, Reynolds RP. Collagenous colitis and lymphocytic colitis: patient characteristics and clinical presentation. Scand J Gastroenterol. 2005;40(3):343-7. [Crossref]  [PubMed]
  44. Wolber R, Owen D, Freeman H. Colonic lymphocytosis in patients with celiac sprue. Hum Pathol. 1990;21:1092- 6. [Crossref]  [PubMed]
  45. Breen EG, Coughlan G, Connolly CE, Stevens FM, McCarthy CF. Coeliac proctitis. Scand J Gastroenterol. 1987;22(4):471-7. [Crossref]  [PubMed]
  46. Bohr J, Tysk C, Eriksson S, Järnerot G. Collagenous colitis in Orebro, Sweden, an epidemiological study 1984-1993. Gut. 1995;37(3):394-7. [Crossref]  [PubMed]  [PMC]
  47. Fernández-Bañares F, Salas A, Forné M, Esteve M, Espinós J, Viver JM. Incidence of collagenous and lymphocytic colitis: a 5-year population-based study. Am J Gastroenterol. 1999;94(2):418-23. [Crossref]  [PubMed]
  48. Fischer H, Holst E, Karlsson F, Benoni C, Toth E, Olesen M, et al. Altered microbiota in microscopic colitis. Gut. 2015;64(7):1185-6. [Crossref]  [PubMed]  [PMC]
  49. Sonnenberg A, Genta RM. Inverse association between helicobacter pylori gastritis and microscopic colitis. Infl amm Bowel Dis. 2016;22:182-6. [Crossref]  [PubMed]
  50. Holstein A, Burmeister J, Plaschke A, Rosemeier D, Widjaja A, Egberts EH. Autoantibody profiles in microscopic colitis. J Gastroenterol Hepatol. 2006;21(6):1016-20. [Crossref]  [PubMed]
  51. Fine KD, Do K, Schulte K, Ogunji F, Guerra R, Osowski L, et al. High prevalence of celiac sprue-like HLA-DQ genes and enteropathy in patients with the microscopic colitis syndrome. Am J Gastroenterol. 2000;95(8):1974-82. [Crossref]  [PubMed]
  52. Hamilton I, Sanders S, Hopwood D, Bouchier IA. Collagenous colitis associated with small intestinal villous atrophy. Gut. 1986;27(11):1394-8. [Crossref]  [PubMed]  [PMC]
  53. Matteoni CA, Goldblum JR, Wang N, Brzezinski A, Achkar E, Soffer EE. Celiac disease is highly prevalent in lymphocytic colitis. J Clin Gastroenterol. 2001;32(3):225-7. [Crossref]  [PubMed]
  54. Weidenhiller M, Müller S, Schwab D, Hahn EG, Raithel M, Winterkamp S. Microscopic (collagenous and lymphocytic) colitis triggered by food allergy. Gut. 2005;54(2):312-3. [Crossref]  [PubMed]  [PMC]
  55. Fernandez-Bañares F, Esteve M, Salas A, Forné TM, Espinos JC, Martín-Comin J, et al. Bile acid malabsorption in microscopic colitis and in previously unexplained functional chronic diarrhea. Dig Dis Sci. 2001;46(10):2231-8. [Crossref]  [PubMed]
  56. Eusufzai S , Lofb erg R , Veress B et al. Studies on bile acid metabolism in collagenous colitis: no evidence of bile acid malabsorption as determined by the SeHCATtest . Eur J Gastroenterol Hepatol. 1992;4:317-21.
  57. Ung KA, Gillberg R, Kilander A, Abrahamsson H. Role of bile acids and bile acid binding agents in patients with collagenous colitis. Gut. 2000;46(2):170-5. [Crossref]  [PubMed]  [PMC]
  58. Bohr J, Nordfelth R, Järnerot G, Tysk C. Yersinia species in collagenous colitis: a serologic study. Scand J Gastroenterol. 2002;37:711-4. [Crossref]  [PubMed]
  59. Erim T, Alazmi W, O'Loughlin C, Barkin J. Collagenous colitis associated with Clostridium difficile: a cause effect? Dig Dis Sci. 2003:48:13745.
  60. Perk G, Ackerman Z, Cohen P, Eliakim R. Lymphocytic colitis: a clue to an infectious trigger. Scand. J. Gastroenterol. 1999;34:110-2. [Crossref]  [PubMed]
  61. Olesen M, Middelveld R, Bohr J, Tysk C, Lundberg JO, Eriksson S, et al. Luminal nitric oxide and epithelial expression of inducible and endothelial nitric oxide synthase in collagenous and lymphocytic colitis. Scand J Gastroenterol. 2003;38(1):66-72. [Crossref]  [PubMed]
  62. Perner A, Nordgaard I, Matzen P, Rask-Madsen J. Colonic production of nitric oxide gas in ulcerative colitis, collagenous colitis and uninflamed bowel. Scand J Gastroenterol. 2002;37:183-8. [Crossref]  [PubMed]
  63. Andresen L, Jørgensen VL, Perner A, Hansen A, Eugen-Olsen J, Rask-Madsen J. Activation of nuclear factor kappaB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut. 2005;54(4):503-9. [Crossref]  [PubMed]  [PMC]
  64. Bonderup OK, Hansen JB, Madsen P, Vestergaard V, Fallingborg J, Teglbjaerg PS. Budesonide treatment and expression of inducible nitric oxide synthase mRNA in colonic mucosa in collagenous colitis. Eur J Gastroenterol Hepatol. 2006;18(10):1095-9. [Crossref]  [PubMed]
  65. Ståhle-Bäckdahl M, Maim J, Veress B, Benoni C, Bruce K, Egesten A. Increased presence of eosinophilic granulocytes expressing transforming growth factor-beta1 in collagenous colitis. Scand J Gastroenterol. 2000;35(7):742-6. [Crossref]  [PubMed]
  66. Griga T, Tromm A, Schmiegel W, Pfisterer O, Müller KM, Brasch F. Collagenous colitis: implications for the role of vascular endothelial growth factor in repair mechanisms. Eur J Gastroenterol Hepatol. 2004;16(4):397-402. [Crossref]  [PubMed]
  67. Taha Y, Raab Y, Larsson A, Carlson M, Lööf L, Gerdin B, et al. Vascular endothelial growth factor (VEGF)--a possible mediator of inflammation and mucosal permeability in patients with collagenous colitis. Dig Dis Sci. 2004;49(1):109-15. [Crossref]  [PubMed]
  68. Taha Y, Raab Y, Larsson A, Carlson M, Lööf L, Gerdin B, Thörn M. Mucosal secretion and expression of basic fibroblast growth factor in patients with collagenous colitis. Am J Gastroenterol. 2003;98(9):2011-7. [Crossref]  [PubMed]
  69. Hwang WS, Kelly JK. Collagenous colitis: a disease of pericryptal fibroblast sheath? J Pathol. 1986;149:33-40. [Crossref]  [PubMed]
  70. Aigner T, Neureiter D, Müller S, Küspert G, Belke J, Kirchner T. Extracellular matrix composition and gene expression in collagenous colitis. Gastroenterology. 1997;113(1):136-43. [Crossref]  [PubMed]
  71. Lee E, Schiller LR, Vendrell D, Santa Ana CA, Fordtran JS. Subepithelial collagen table thickness in colon specimens from patients with microscopic colitis and collagenous colitis. Gastroenterology. 1992;103(6):1790-6. [Crossref]  [PubMed]
  72. Catassi C, Verdu EF, Bai JC, Lionetti E. Celiac disease. The Lancet. 2022; 399:2413-26. [Crossref]  [PubMed]
  73. Aboulaghras S, Piancatelli D, Oumhani K, Balahbib A, Bouyahya A, Taghzouti K. Pathophysiology and immunogenetics of celiac disease. Clinica Chimica Acta. 2022;528:74-83. [Crossref]  [PubMed]
  74. Valitutti F, Fasano A. Breaking down barriers: how understanding celiac diseasepathogenesis informed the development of novel treatments. Dig Dis Sci. 2019;64:1748-58. [Crossref]  [PubMed]  [PMC]
  75. Di Sabatino A, Vanoli A, Giuffrida P, Luinetti O, Solcia E, Corazza GR. The function of tissue transglutaminase in celiac disease, Autoimmun Rev. 2012;11:746-53. [Crossref]  [PubMed]
  76. Cianci R, Pagliari D, Landolfi R, Frosali S, Colagiovanni A, Cammarota G, et al. New insights on the role of T cells in the pathogenesis of celiac disease. J Biol Regul Homeost Agents. 2012;26(2):171-9.
  77. Bakker OB, Ramírez-Sánchez AD, Borek ZA, de Klein N, Li Y, Modderman R, Kooy-Winkelaar Y, et al. Potential impact of celiac disease genetic risk factors on T cell receptor signaling in gluten-specific CD4+ T cells. Sci Rep. 2021;11(1):9252. [Crossref]  [PubMed]  [PMC]
  78. Monteleone I, Sarra M, Del Vecchio Blanco G, Paoluzi OA, Franzè E, Fina D, et al. Characterization of IL-17A-producing cells in celiac disease mucosa. J Immunol. 2010;184(4):2211-8. [Crossref]  [PubMed]
  79. El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology. 2002;123(5):1607-15. [Crossref]  [PubMed]
  80. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194-204.e3. [Crossref]  [PubMed]  [PMC]
  81. Tian N, Faller L, Leffler DA, Kelly CP, Hansen J, Bosch JA, et al. Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients. Appl Environ Microbiol. 2017;83(6):e03330-16. [Crossref]  [PubMed]  [PMC]
  82. Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB, et al. Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie. 2012;94(8):1724-9. [Crossref]  [PubMed]
  83. Nasef NA, Mehta S. Role of Inflammation in Pathophysiology of Colonic Disease: An Update. Int J Mol Sci. 2020;21(13):4748. [Crossref]  [PubMed]  [PMC]
  84. Reichert MC, Kupcinskas J, Krawczyk M, Jüngst C, Casper M, Grünhage F, et al. A Variant of COL3A1 (rs3134646) Is Associated With Risk of Developing Diverticulosis in White Men. Dis Colon Rectum. 2018;61(5):604-11. [Crossref]  [PubMed]
  85. Peery AF, Keku TO, Addamo C, McCoy AN, Martin CF, Galanko JA, et al. Colonic Diverticula Are Not Associated With Mucosal Inflammation or Chronic Gastrointestinal Symptoms. Clin Gastroenterol Hepatol. 2018;16(6):884-891.e1. [Crossref]  [PubMed]  [PMC]
  86. von Rahden BH, Kircher S, Thiery S, Landmann D, Jurowich CF, Germer CT, et al. Association of steroid use with complicated sigmoid diverticulitis: potential role of activated CD68+/CD163+ macrophages. Langenbecks Arch Surg. 2011;396(6):759-68. [Crossref]  [PubMed]
  87. Barbara G, Scaioli E, Barbaro MR, Biagi E, Laghi L, Cremon C, et al. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut. 2017;66(7):1252-61. [Crossref]  [PubMed]
  88. Tursi A, Elisei W, Brandimarte G, Giorgetti GM, Inchingolo CD, Nenna R, et al. Musosal tumour necrosis factor α in diverticular disease of the colon is overexpressed with disease severity. Colorectal Dis. 2012;14(5):e258-63. [Crossref]  [PubMed]
  89. Humes DJ, Simpson J, Smith J, Sutton P, Zaitoun A, Bush D, et al. Visceral hypersensitivity in symptomatic diverticular disease and the role of neuropeptides and low grade inflammation. Neurogastroenterol Motil. 2012;24(4):318-e163. [Crossref]  [PubMed]
  90. Tursi A, Mastromarino P, Capobianco D, Elisei W, Picchio M, Brandimarte G. No changes in Interleukin-10 expression in symptomatic uncomplicated diverticular disease of the colon. J Gastrointestin Liver Dis. 2018;27(4):476-7. [Crossref]  [PubMed]
  91. Tursi A, Elisei W, Giorgetti GM, Inchingolo CD, Nenna R, Picchio M, et al. Expression of basic fibroblastic growth factor, syndecan 1 and tumour necrosis factor α in resected acute colonic diverticulitis. Colorectal Dis. 2014;16(3):O98-103. [Crossref]  [PubMed]
  92. Connelly TM, Berg AS, Hegarty JP, Deiling S, Brinton D, Poritz LS, et al. The TNFSF15 gene single nucleotide polymorphism rs7848647 is associated with surgical diverticulitis. Ann Surg. 2014;259(6):1132-7. [Crossref]  [PubMed]
  93. Sigurdsson S, Alexandersson KF, Sulem P, Feenstra B, Gudmundsdottir S, Halldorsson GH, et al. Sequence variants in ARHGAP15, COLQ and FAM155A associate with diverticular disease and diverticulitis. Nat Commun. 2017;8:15789. [Crossref]  [PubMed]  [PMC]
  94. Kvasnovsky CL, Leong LEX, Choo JM, Abell GCJ, Papagrigoriadis S, Bruce KD, et al. Clinical and symptom scores are significantly correlated with fecal microbiota features in patients with symptomatic uncomplicated diverticular disease: a pilot study. Eur J Gastroenterol Hepatol. 2018;30(1):107-12. [Crossref]  [PubMed]
  95. Gueimonde M, Ouwehand A, Huhtinen H, Salminen E, Salminen S. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J Gastroenterol. 2007;13(29):3985-9. [Crossref]  [PubMed]  [PMC]
  96. Zhu S, Wang B, Jia Q, Duan L. Candidate single nucleotide polymorphisms of irritable bowel syndrome: a systemic review and meta-analysis. BMC Gastroenterol. 2019;19(1):165. [Crossref]  [PubMed]  [PMC]
  97. Sinagra E, Pompei G, Tomasello G, Cappello F, Morreale GC, Amvrosiadis G, et al. Inflammation in irritable bowel syndrome: Myth or new treatment target? World J Gastroenterol. 2016;22(7):2242-55. [Crossref]  [PubMed]  [PMC]
  98. Seyedmirzaee S, Hayatbakhsh MM, Ahmadi B, Baniasadi N, Bagheri Rafsanjani AM, Nikpoor AR, et al. Serum immune biomarkers in irritable bowel syndrome. Clin Res Hepatol Gastroenterol. 2016;40(5):631-7. [Crossref]  [PubMed]
  99. Bashashati M, Moradi M, Sarosiek I. Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine. 2017;99:132-8. [Crossref]  [PubMed]
  100. Maxwell PR, Rink E, Kumar D, Mendall MA. Antibiotics increase functional abdominal symptoms. Am J Gastroenterol. 2002;97(1):104-8. [Crossref]  [PubMed]
  101. Pimentel M, Lembo A. Microbiome and Its Role in Irritable Bowel Syndrome. Dig Dis Sci. 2020;65(3):829-39. [Crossref]  [PubMed]
  102. Pimentel M, Chang C, Chua KS, Mirocha J, DiBaise J, Rao S, Amichai M. Antibiotic treatment of constipation-predominant irritable bowel syndrome. Dig Dis Sci. 2014;59(6):1278-85. [Crossref]  [PubMed]
  103. Burns G, Carroll G, Mathe A, Horvat J, Foster P, Walker MM, et al. Evidence for Local and Systemic Immune Activation in Functional Dyspepsia and the Irritable Bowel Syndrome: A Systematic Review. Am J Gastroenterol. 2019;114(3):429-36. [Crossref]  [PubMed]