GUT-BRAIN AXIS

Turay Mutlu1
Buğra Selluncak2
Büşra Nur Balıkel3
İsmet Murat Melek4

1Ankara Etlik City Hospital, Department of Neurology, Ankara, Türkiye
2Adana City Hospital, Department of Neurology, Adana, Türkiye
3Hatay Mustafa Kemal University, Faculty of Medicine, Department of Neurology, Hatay, Türkiye
4Ankara Etlik City Hospital, Department of Neurology, Ankara, Türkiye

Mutlu T, Selluncak B, Balıkel BN, Melek İM. Gut-Brain Axis. Melek İM, Aydoğan S, eds. Microbiota. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.11-22.

ABSTRACT

The gut microbiota is a rich ecosystem of trillions of microorganisms, including bacteria as well as fungi and viruses. Structural and functional changes in this integrated entity have various effects on the nervous system, both directly and through systemic interactions. The bidirectional communication between the gastrointestinal system and the nervous system, which are closely related, is defined as the “gut-brain axis”. The outcomes of the mechanisms defined within this axis can have either neuroprotective or pathological character. Strategies to be developed through these effects, which have been studied specifically for diseases, have the opportunity to offer prevention measures and treatment options. Therefore, the goal of expanding existing approaches necessitates an in-depth understanding of this mysterious field.

Keywords: Intestines; Enteric nervous system; Central nervous system; Vagus nerve; Inflammation

Referanslar

  1. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012 Aug;70 Suppl 1(Suppl 1):S38-44. [Crossref]  [PubMed]  [PMC]
  2. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017 Dec 27;15(1):127. [Crossref]  [PubMed]  [PMC]
  3. Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, et al. Emerging Priorities for Microbiome Research. Front Microbiol. 2020 Feb 19;11:136. [Crossref]  [PubMed]  [PMC]
  4. Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res. 2015 Apr;63:1-9. [Crossref]  [PubMed]
  5. Miller I. The gut-brain axis: historical reflections. Microb Ecol Health Dis. 2018 Nov 8;29(1):1542921. [Crossref]  [PubMed]  [PMC]
  6. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science. 2021 Nov 26;374(6571):1087-1092. [Crossref]  [PubMed]
  7. Patra S. Psychobiotics: A paradigm shift in psychopharmacology. Indian J Pharmacol. 2016 Jul-Aug;48(4):469-470. [Crossref]  [PubMed]  [PMC]
  8. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019 Oct 1;99(4):1877-2013. [Crossref]  [PubMed]
  9. Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012 Nov;107(11):1755; author reply p.1755-6. [Crossref]  [PubMed]
  10. van Leeuwenhoek A. The Collected Letters of Antoni Van Leeuwenhoek. Amsterdam, The Netherlands: 1967. Swets and Zeitlinger; Letter 76 [39] from van Leeuwenhoek to Francis Aston (1683). [Link]
  11. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207-14. [Crossref]  [PubMed]  [PMC]
  12. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14691-6. [Crossref]  [PubMed]  [PMC]
  13. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun. 2015 Mar 25;6:6505. [Crossref]  [PubMed]  [PMC]
  14. Barthez P.J. Nouveaux Élémens de la Science de L'homme. Paris, France: Goujon et Brinot; 1778. [Link]
  15. Grimaud J.C. Mémoire sur la Nutrition. Montpellier, France: Jean Martel; 1787. [Link]
  16. Haigh E. The roots of the vitalism of Xavier Bichat. Bull. Hist. Med. 1975;49:72-86. [PubMed]
  17. Whytt R. Observations on the Nature, Causes, and Cure of Those Disorders which have been Commonly called Nervous, Hypochondriac, or Hysteric, To which are prefixed some Remarks on the Sympathy of the Nerves. T. Becket, and P. DuHondt, London, and J. Balfour, Edinburgh 1765: Viii + p. 520. Psychoanal. Q. 1933;2:615-61839 [Crossref]
  18. Johnson J. An Essay on Morbid Sensibility of the Stomach and Bowels. London, UK: Thomas & George Underwood; 1827. [Link]
  19. Bradshaw W. Brain and Stomach or Mind and Matter. London, UK: W. Philip; 1867. [Link]
  20. Abernethy J. Surgical Observations on the Constitutional Origin and Treatment of Local Diseases. London, UK: Longman, Rees, Orme, Brown and Green; 1811. [Link]
  21. Dr. Baillie's Posthumous Writings. Med Chir Rev. 1826 Apr;4(8):364-379. [PMC]
  22. Anon. North Wales Chronicle. Bangor, UK: Augustus Robert Martin; Mar 15, 1851.
  23. Anon. Meditations on dyspepsia. Blackwood's Edinburgh Review. 1861;90(52):302.
  24. Miller I. A Dangerous Revolutionary Force Amongst Us. Cult. Soc. Hist. 2013;10:419-438. [Crossref]
  25. Anon. Freeman's Journal. Dublin, Ireland: William Kelly; Sep 14, 1872.
  26. Mathias M. Autointoxication and historical precursors of the microbiome-gut-brain axis. Microb Ecol Health Dis. 2018 Nov 27;29(2):1548249. [Crossref]  [PubMed]  [PMC]
  27. Farré-Maduell E., Casals-Pascual C. The origins of gut microbiome research in Europe: From Escherich to Nissle. Hum. Microbiome J. 2019;14:100065. [Crossref]
  28. Abercrombie J. Pathological and Practical Researches on Diseases of the Stomach. Edinburgh, UK: Waugh and Innes; 1830. [Link]
  29. Macfadyen A, Nencki M, Sieber N. Research into the Chemical Processes in the Small Intestine of Man. J Anat Physiol. 1891 Apr;25(Pt 3):390-427. [PubMed]
  30. Alexander F. The influence of psychologic factors upon gastrointestinal disturbances' Psychoanal. Q. 1934;3:501-539. [Crossref]
  31. Hayward R. Busman's stomach and the embodiment of modernity. Contemp Br Hist. 2017 Jan 2;31(1):1-23. [Crossref]  [PubMed]  [PMC]
  32. Fenwick W. Dyspepsia: Its Varieties and Treatment. Philadelphia, PA, USA: London, UK: W.B. Saunders; 1910. [Link]
  33. Metchnikoff I.I. The Prolongation of Life: Optimistic Studies. Berlin/Heidelberg, Germany: Springer Publishing Company; 2004. [Link]
  34. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015 Aug 7;21(29):8787-803. [Crossref]  [PubMed]  [PMC]
  35. Dubos R., Schaedler RW, Costello R., Hoet P. Indigenous, Normal, and Autochthonous Flora of the Gastrointestinal Tract. J. Exp. Med. 1965 Jul 1;122(1):67-76. [Crossref]  [PubMed]  [PMC]
  36. Black J. Reflections on the analytical pharmacology of histamine h2-receptor antagonists. Gastroenterology. 1993 Oct;105(4):963-8. [Crossref]  [PubMed]  [PMC]
  37. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984 Jun 16;1(8390):1311-5. [Crossref]  [PubMed]
  38. Bocci V. The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect Biol Med. 1992 Winter;35(2):251-60. [Crossref]  [PubMed]
  39. Gershon M. The Second Brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine. New York, NY, USA: HarperCollins; 1998. [Link]
  40. Human Microbiome. Edinburgh, Scotland: Encyclopedia Britannica Inc.; 2016. Encyclopedia Britannica. [Link]
  41. MetaHIT. [(accessed on 2 November 2020)]. Available online: [Link]
  42. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859-904. [Crossref]  [PubMed]
  43. Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterol Motil. 2012 May;24(5):405-13. [Crossref]  [PubMed]
  44. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013 Dec;13(6):935-40. [Crossref]  [PubMed]
  45. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009 May;9(5):313-23.Erratum in: Nat Rev Immunol. 2009 Aug;9(8):600. [Crossref]  [PubMed]  [PMC]
  46. Joly A, Leulier F, De Vadder F. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol. 2021 Aug;29(8):686-699. [Crossref]  [PubMed]  [PMC]
  47. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015 Mar 2;125(3):926-38. [Crossref]  [PubMed]  [PMC]
  48. Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother. 2024 Sep;178:117207. [Crossref]  [PubMed]  [PMC]
  49. Obata Y, Pachnis V. The Effect of Microbiota and the Immune System on the Development and Organization of the Enteric Nervous System. Gastroenterology. 2016 Nov;151(5):836-844. [Crossref]  [PubMed]  [PMC]
  50. Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021 Oct 26;9(1):210. [Crossref]  [PubMed]  [PMC]
  51. Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nat Rev Gastroenterol Hepatol. 2018 Oct;15(10):625-636. [Crossref]  [PubMed]
  52. Kresl P, Rahimi J, Gelpi E, Aldecoa I, Ricken G, Danics K, Keller E, Kovacs GG. Accumulation of prion protein in the vagus nerve in creutzfeldt-jakob disease. Ann Neurol. 2019 May;85(5):782-787. [Crossref]  [PubMed]  [PMC]
  53. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016 May 27;16(6):341-52. [Crossref]  [PubMed]  [PMC]
  54. Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Front Immunol. 2020 Dec 10;11:604179. [Crossref]  [PubMed]  [PMC]
  55. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004 Jul 1;558(Pt 1):263-75. [Crossref]  [PubMed]  [PMC]
  56. Klug M, Hill RA, Choy KH, Kyrios M, Hannan AJ, van den Buuse M. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice. Neurobiol Dis. 2012 Jun;46(3):722-31. [Crossref]  [PubMed]
  57. Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Prog Mol Biol Transl Sci. 2020;176:43-110. [Crossref]  [PubMed]
  58. Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018 Apr 12;6(2):133-148. [Crossref]  [PubMed]
  59. Tran SM, Mohajeri MH. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients. 2021 Feb 25;13(3):732. [Crossref]  [PubMed]  [PMC]
  60. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263):263ra158. Erratum in: Sci Transl Med. 2014 Dec 10;6(266):266er7. Guan, Ng Lai [corrected to Ng, Lai Guan]. [Crossref]  [PubMed]  [PMC]
  61. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016 Oct;99:110-132. [Crossref]  [PubMed]
  62. Salami M, Soheili M. The microbiota-gut- hippocampus axis. Front Neurosci. 2022 Dec 23;16:1065995. [Crossref]  [PubMed]
  63. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018 Oct 1;10(10):1398. [Crossref]  [PubMed]  [PMC]
  64. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. [Crossref]  [PubMed]  [PMC]
  65. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008 Jan;33(1):18-41. [Crossref]  [PubMed]
  66. Madison DV, Malenka RC, Nicoll RA. Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci. 1991;14:379-97. [Crossref]  [PubMed]
  67. Gage FH. Mammalian neural stem cells. Science. 2000 Feb 25;287(5457):1433-8. [Crossref]  [PubMed]
  68. Agnihotri N, Mohajeri MH. Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor. Int J Mol Sci. 2022 Dec 14;23(24):15934. [Crossref]  [PubMed]  [PMC]
  69. Tang W, Meng Z, Li N, Liu Y, Li L, Chen D, Yang Y. Roles of Gut Microbiota in the Regulation of Hippocampal Plasticity, Inflammation, and Hippocampus-Dependent Behaviors. Front Cell Infect Microbiol. 2021 Jan 27;10:611014. [Crossref]  [PubMed]  [PMC]
  70. Cao F, Zhang H, Xu B, Li C. Genetic association between gut microbiota and the risk of Guillain-Barré syndrome. J Affect Disord. 2024 Jul 15;357:171-178. [Crossref]  [PubMed]  [PMC]
  71. Shi J, Yi M, Xie S, Wang Z, Zhang X, Tan X, Tao D, Liu Y, Yang Y. Mendelian randomization study revealed a gut microbiota-neuromuscular junction axis in myasthenia gravis. Sci Rep. 2024 Jan 30;14(1):2473. [Crossref]  [PubMed]  [PMC]
  72. D'Argenio V, Sarnataro D. Microbiome Influence in the Pathogenesis of Prion and Alzheimer's Diseases. Int J Mol Sci. 2019 Sep 23;20(19):4704. [Crossref]  [PubMed]  [PMC]