HEMODYNAMIC MONITORING

Hülya Özden Terzi

Ankara Bilkent City Hospital, Department of Intensive Care, Ankara, Türkiye

Terzi HÖ. Hemodynamic Monitoring. In: Turan S, editor. Hard Decisions in Intensive Care Unit. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.379-393.

ABSTRACT

Hemodynamic monitoring is a critical tool in the management of critically ill patients, providing real-time data that guides clinical decision-making and helps optimize tissue perfusion. By evaluating parameters such as blood pressure, cardiac output, vascular resistance, and fluid status, healthcare providers can detect early signs of complications like shock, heart failure, or hypovolemia, and tailor interventions to individual patient needs. Hemodynamic monitoring is particularly valuable in guiding fluid resuscitation and the use of vasoactive medications, ensuring that patients receive the appropriate level of care without the risks of underor over-resuscitation.

Technological advancements have expanded the range of monitoring techniques, shifting from invasive methods like pulmonary artery catheterization to less invasive approaches such as transpulmonary thermodilution, pulse wave analysis and esophageal Doppler. These methods provide continuous and real-time hemodynamic data, enabling the assessment of fluid responsiveness and cardiac output. Dynamic variables like pulse pressure variation and stroke volume variation have proven superior to static variables in predicting fluid responsiveness.

Indirect measurements of perfusion and oxygen delivery, including central venous oxygen saturation, lactate levels, and the central venous-arterial carbon dioxide difference, are also valuable in assessing tissue oxygenation. Elevated lactate levels and failure to clear lactate are associated with worse outcomes, making lactate clearance a strong prognostic marker in sepsis and other critical conditions. The central venous-arterial carbon dioxide difference, which reflects the adequacy of cardiac output in clearing metabolic carbon dioxide, has gained attention as a potential marker of tissue perfusion.

Despite the benefits, each monitoring method has its limitations and risks. For example, pulmonary artery catheterization carries risks of complications during insertion, maintenance, and withdrawal, while less invasive methods may have limitations in accuracy or applicability in certain clinical conditions. The choice of monitoring technique depends on the patient’s clinical condition, the severity of the illness, and available resources.

In conclusion, hemodynamic monitoring is indispensable in critical care, enabling clinicians to make informed decisions, personalize treatment plans, and improve patient outcomes. As technology continues to evolve, the focus remains on developing less invasive, more accurate methods to assess and manage hemodynamic stability in critically ill patients.

Keywords: Hemodynamic monitoring; Critical care; Cardiac output; Fluid responsiveness; Pulse pressure variation; Lactate clearance

Referanslar

  1. Vincent JL, Moore FA, Bellomo R, Marini JJ. Textbook of Critical Care. 8 ed: Elsevier; 2024. [Link]
  2. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345(19):1368-1377. [Crossref]  [PubMed]
  3. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779-789. [Crossref]  [PubMed]
  4. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774-1781. [Crossref]  [PubMed]
  5. Iberti TJ, Fischer EP, Leibowitz AB, Panacek EA, Silverstein JH, Albertson TE. A multicenter study of physicians' knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. Jama. 1990;264(22):2928-2932. [Crossref]  [PubMed]
  6. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA.1996;276(11):889-897. [Crossref]  [PubMed]
  7. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. Jama. 2003;290(20):2713-2720. [Crossref]  [PubMed]
  8. Connors AF, Jr, McCaffree DR, Gray BA. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med. 1983;308(5):263-267. [Crossref]  [PubMed]
  9. Thomas JT, Kelly RF, Thomas SJ, Stamos TD, Albasha K, Parrillo JE, et al. Utility of history, physical examination, electrocardiogram, and chest radiograph for differentiating normal from decreased systolic function in patients with heart failure. Am J Med. 2002;112(6):437-445. [Crossref]  [PubMed]
  10. Beurton A, Teboul JL, Monnet X. Transpulmonary thermodilution techniques in the haemodynamically unstable patient. Curr Opin Crit Care. 2019;25(3):273-279. [Crossref]  [PubMed]
  11. Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17(5):447-452. [Crossref]  [PubMed]
  12. Jozwiak M, Monnet X, Teboul JL. Pressure Waveform Analysis. Anesth Analg. 2018;126(6):1930-1933. [Crossref]  [PubMed]
  13. Saugel B, Kouz K, Scheeren TWL, Greiwe G, Hoppe P, Romagnoli S, et al. Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review. Br J Anaesth. 2021;126(1):67-76. [Crossref]  [PubMed]
  14. Michard F, Teboul JL. Predicting fluid responsiveness inICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000-2008. [Crossref]  [PubMed]
  15. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344-353. [Crossref]  [PubMed]
  16. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Annals of Intensive Care. 2016;6(1). [Crossref]  [PubMed]  [PMC]
  17. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18. [Crossref]  [PubMed]  [PMC]
  18. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6(1):111. [Crossref]  [PubMed]  [PMC]
  19. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37(3):951-956. [Crossref]  [PubMed]
  20. Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935-1947. [Crossref]  [PubMed]
  21. Messina A, Dell'Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019;23(1):264. [Crossref]  [PubMed]  [PMC]
  22. Gavelli F, Teboul JL, Monnet X. How can CO2-derived indices guide resuscitation in critically ill patients?. J Thorac Dis. 2019;11(Suppl 11):S1528-S1537. [Crossref]  [PubMed]  [PMC]
  23. Gavelli F, Shi R, Teboul JL, Azzolina D, Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: a systematic review and meta-analysis. Ann Intensive Care. 2020;10(1):65. [Crossref]  [PubMed]  [PMC]
  24. Lilly CM, Irwin RS, Boyle WA, Kelly WF. Irwin and Rippe's Intensive Care Medicine. 9 ed: Wolters Kluwer Health; 2024. [Link]
  25. Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med. 2000;28(11):3631-3636. [Crossref]  [PubMed]
  26. Teboul JL, Andrivet P, Ansquer M, Besbes M, Rekik N, Lemaire F, et al. Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiol (1985). 1992;72(3):998-1003. [Crossref]  [PubMed]
  27. Haller M, Zöllner C, Briegel J, Forst H. Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med. 1995;23(5):860-866. [Crossref]  [PubMed]
  28. Teboul JL, Hamzaoui O, Monnet X. SvO2 to monitor resuscitation of septic patients: let's just understand the basic physiology. Crit Care. 2011;15(6):1005. [Crossref]  [PubMed]  [PMC]
  29. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med. 1995;333(16):1025-1032. [Crossref]  [PubMed]
  30. Nunes S, Ruokonen E, Takala J. Pulmonary capillary pressures during the acute respiratory distress syndrome. Intensive Care Med. 2003;29(12):2174-2179. [Crossref]  [PubMed]
  31. Ferguson ND, Meade MO, Hallett DC, Stewart TE. High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med. 2002;28(8):1073-1077. [Crossref]  [PubMed]
  32. Balik M, Pachl J, Hendl J. Effect of the degree of tricuspid regurgitation on cardiac output measurements by thermodilution. Intensive Care Med. 2002;28(8):1117-1121. [Crossref]  [PubMed]
  33. Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. Crit Care. 2017;21(1):147. [Crossref]  [PubMed]  [PMC]
  34. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42(9):1350-1359. [Crossref]  [PubMed]
  35. Monnet X, Teboul JL. Minimally invasive monitoring. Crit Care Clin. 2015;31(1):25-42. [Crossref]  [PubMed]
  36. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126(6):1001- 1004. [PubMed]
  37. Biais M, Nouette-Gaulain K, Cottenceau V, et al. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106(5). [Crossref]  [PubMed]
  38. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14(3):R109. [Crossref]  [PubMed]  [PMC]
  39. Monnet X, Lahner D. Can the "FloTrac" really track flow in septic patients? Intensive Care Med. 2011;37(2):183-185. [Crossref]  [PubMed]
  40. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, et al. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Crit Care. 2012;16(3):R98. [Crossref]  [PubMed]  [PMC]
  41. Bendjelid K, Giraud R, Siegenthaler N, Michard F. Validation of a new transpulmonary thermodilution system to assess global end-diastolic volume and extravascular lung water. Crit Care. 2010;14(6):R209. [Crossref]  [PubMed]  [PMC]
  42. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL. Global End-Diastolic Volume as an Indicator of Cardiac Preload in Patients with Septic Shock. Chest. 2003; 124(5):1900-1908. [Crossref]  [PubMed]
  43. Hofer CK, Furrer L, Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M, et al. Volumetric preload measurement by thermodilution: A comparison with transoesophageal echocardiography. British Journal of Anaesthesia. 2005;94(6):748-755. [Crossref]  [PubMed]
  44. Hofer CK, Ganter MT, Matter-Ensner S, Furrer L, Klaghofer R, Genoni M, et al. Volumetric assessment of left heart preload by thermodilution: Comparing the PiCCO-VoLEF® system with transoesophageal echocardiography. Anaesthesia. 2006;61(4):316-321. [Crossref]  [PubMed]
  45. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral anda jugular central venous catheter. Crit Care. 2010;14(3):R95. [Crossref]  [PubMed]  [PMC]
  46. Schmidt S, Westhoff TH, Hofmann C, Schaefer JH, Zidek W, Compton F, et al. Effect of the venous catheter site on transpulmonary thermodilution measurement variables. Critical Care Medicine. 2007;35(3):783-786. [Crossref]  [PubMed]
  47. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B. Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest. 2000;118(3):775-781. [Crossref]  [PubMed]
  48. Huber W, Umgelter A, Reindl W, Franzen M, Schmidt C, Von Delius S, et al. Volume assessment in patients with necrotizing pancreatitis: A comparison of intrathoracic blood volume index, central venous pressure, and hematocrit, and their correlation to cardiac index and extravascular lung water index. Critical Care Medicine. 2008;36(8):2348-2354. [Crossref]  [PubMed]
  49. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Critical Care Medicine. 2004;32(3):691-699. [Crossref]  [PubMed]
  50. Combes A, Berneau JB, Luyt CE, Trouillet JL. Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Medicine. 2004; 30(7):1377-1383. [Crossref]  [PubMed]
  51. Jabot J, Monnet X, Bouchra L, Chemla D, Richard C, Teboul JL. Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Critical Care Medicine. 2009;37(11):2913-2918. [Crossref]  [PubMed]
  52. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Medicine. 2002;28(4):392-398. [Crossref]  [PubMed]
  53. Perny J, Kimmoun A, Perez P, Levy B. Evaluation of cardiac function index as measured by transpulmonary thermodilution as an indicator of left ventricular ejection fraction in cardiogenic shock. Biomed Res Int. 2014;2014:598029. [Crossref]  [PubMed]  [PMC]
  54. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul JL. Precision of the transpulmonary thermodilution measurements. Crit Care. 2011;15(4):R204. [Crossref]  [PubMed]  [PMC]
  55. Meybohm P, Gruenewald M, Renner J, Maracke M, Rossee S, Höcker J, et al. Assessment of left ventricular systolic function during acute myocardial ischemia: A comparison of transpulmonary thermodilution and transesophageal echocardiography. Minerva Anestesiologica. 2011;77(2):132-141. [PubMed]
  56. Robotham JL, Takata M, Berman M, Harasawa Y. Ejection fraction revisited. Anesthesiology. 1991;74(1):172-183. [Crossref]  [PubMed]
  57. Tagami T, Kushimoto S, Yamamoto Y, Atsumi T, Tosa R, Matsuda K, et al. Validation of extravascular lung water measurement by single transpulmonary thermodilution: human autopsy study. Crit Care. 2010;14(5):R162. [Crossref]  [PubMed]  [PMC]
  58. Dres M, Teboul JL, Guerin L, Anguel N, Amilien V, Clair MP, et al. Transpulmonary thermodilution enables to detect small short-term changes in extravascular lung water induced by a bronchoalveolar lavage. Crit Care Med. 2014;42(8):1869-1873. [Crossref]  [PubMed]
  59. Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-480. [Crossref]  [PubMed]
  60. Sakka SG, Rühl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Medicine. 2000;26(2):180-187. [Crossref]  [PubMed]
  61. Kiefer N, Hofer CK, Marx G, Geisen M, Giraud R, Siegenthaler N, et al. Clinical validation of a new thermodilution system for the assessment of cardiac output and volumetric parameters. Critical Care. 2012;16(3):R98. [Crossref]  [PubMed]  [PMC]
  62. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Medicine. 2007;33(3):448-453. [Crossref]  [PubMed]
  63. Kushimoto S, Taira Y, Kitazawa Y, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acuterespiratory distress syndrome. Crit Care. 2012;16(6):R232. [Crossref]  [PubMed]  [PMC]
  64. Schuster DP. The search for "objective" criteria of ARDS. Intensive Care Med. 2007;33(3):400-402. [Crossref]  [PubMed]
  65. Kushimoto S, Endo T, Yamanouchi S, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 2013;17(4):R132. [Crossref]  [PubMed]  [PMC]
  66. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71(2):262-266. [Crossref]  [PubMed]
  67. Cecconi M, Dawson D, Grounds RM, Rhodes A. Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med. 2009;35(3):498-504. [Crossref]  [PubMed]
  68. Cecconi M, Fawcett J, Grounds RM, Rhodes A. A Prospective Study to Evaluate the Accuracy of Pulse Power Analysis to Monitor Cardiac Output in Critically Ill Patients. BMC Anesthesiol. 2008;8:3. [Crossref]  [PubMed]  [PMC]
  69. Cecconi M, Monti G, Hamilton MA, Puntis M, Dawson D, Tuccillo ML, et al. Efficacy of functional hemodynamic parameters in predicting fluid responsiveness with pulse power analysis in surgical patients. Minerva Anestesiol. 2012;78(5):527-533. [PubMed]
  70. Kouz K, Scheeren TWL, de Backer D, Saugel B. Pulse Wave Analysis to Estimate Cardiac Output. Anesthesiology. 2021;134(1):119-126. [Crossref]  [PubMed]
  71. Cecconi M, Parsons AK, Rhodes A. What is a fluid challenge? Curr Opin Crit Care. 2011; 17(3):290-295. [Crossref]  [PubMed]
  72. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Medicine. 2014;40(12):1795-1815. [Crossref]  [PubMed]  [PMC]
  73. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013; 369(18):1726-1734. [Crossref]  [PubMed]
  74. Slagt C, Malagon I, Groeneveld AB. Systematic review of uncalibrated arterial pressure waveform analysis to determine cardiac output and stroke volume variation. Br J Anaesth. 2014;112(4):626-637. [Crossref]  [PubMed]
  75. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101(2):200-206. [Crossref]  [PubMed]
  76. Singer M, Bennett ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med. 1991;19(9):1132-1137. [Crossref]  [PubMed]
  77. Wallmeyer K, Wann LS, Sagar KB, Klopfenstein HS. The influence of preload and heart rate on Doppler echocardiographic indexes of left ventricular performance: comparison with invasive indexes in an experimental preparation. Circulation. 1986; 74(1):181-186. [Crossref]  [PubMed]
  78. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005; 31(9):1195-1201. [Crossref]  [PubMed]
  79. Noblett SE, Snowden CP, Shenton BK, Horgan AF. Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg. 2006; 93(9):1069-1076. [Crossref]  [PubMed]
  80. Phan TD, D'Souza B, Rattray MJ, Johnston MJ, Cowie BS. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care. 2014;42(6):752-760. [Crossref]  [PubMed]
  81. Chytra I, Pradl R, Bosman R, Pelnár P, Kasal E, Zidková A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care. 2007;11(1):R24. [Crossref]  [PubMed]  [PMC]
  82. Daniel WG, Erbel R, Kasper W, Visser CA, Engberding R, Sutherland GR, et al. Safety of transesophageal echocardiography. A multicenter survey of 10,419 examinations. Circulation. 1991;83(3):817-821. [Crossref]  [PubMed]
  83. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998; 158(1):77-83. [Crossref]  [PubMed]
  84. Gan TJ, Arrowsmith JE. The oesophageal Doppler monitor. Bmj. 1997;315(7113):893-894. [Crossref]  [PubMed]  [PMC]
  85. Genoni M, Pelosi P, Romand JA, Pedoto A, Moccetti T, Malacrida R. Determination of cardiac output during mechanical ventilation by electrical bioimpedance or thermodilution in patients with acute lung injury: effects of positive end-expiratory pressure. Crit Care Med. 1998;26(8):1441-1445. [Crossref]  [PubMed]
  86. Brown CV, Martin MJ, Shoemaker WC, Wo CC, Chan L, Azarow K, et al. The effect of obesity on bioimpedance cardiac index. Am J Surg. 2005; 189(5):547-550; discussion 550-541. [Crossref]  [PubMed]
  87. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583-589. [Crossref]  [PubMed]
  88. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22(2):113-119. [Crossref]  [PubMed]
  89. Benomar B, Ouattara A, Estagnasie P, Brusset A, Squara P. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36(11):1875-1881. [Crossref]  [PubMed]
  90. Tong H, Hu C, Hao X, Cai G, Rao Q, Yan M, et al. [The prediction value of noninvasive bioreactance-based passive leg raising test in assessing fluid responsiveness in elderly patients with sepsis]. Zhonghua Nei Ke Za Zhi. 2015; 54(2):130-133. [PubMed]
  91. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013; 143(2):364-370. [Crossref]  [PubMed]
  92. Dunham CM, Chirichella TJ, Gruber BS, Ferrari JP, Martin JA, Luchs BA, et al. Emergency department noninvasive (NICOM) cardiac outputs are associated with trauma activation, patient injury severity and host conditions and mortality. J Trauma Acute Care Surg. 2012;73(2):479-485. [Crossref]  [PubMed]
  93. Lee S, Lee SH, Chang BC, Shim JK. Efficacy of Goal-Directed Therapy Using Bioreactance Cardiac Output Monitoring after Valvular Heart Surgery. Yonsei Med J. 2015;56(4):913-920. [Crossref]  [PubMed]  [PMC]
  94. Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal Doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30(8):501-508. [Crossref]  [PubMed]
  95. Huang L, Critchley LAH, Zhang J. Major Upper Abdominal Surgery Alters the Calibration of Bioreactance Cardiac Output Readings, the NICOM, When Comparisons Are Made Against Suprasternal and Esophageal Doppler Intraoperatively. Anesth Analg. 2015;121(4):936-945. [Crossref]  [PubMed]
  96. Han S, Lee JH, Kim G, Ko JS, Choi SJ, Kwon JH, et al. Bioreactance Is Not Interchangeable with Thermodilution for Measuring Cardiac Output during Adult Liver Transplantation. PLoS One. 2015;10(5):e0127981. [Crossref]  [PubMed]  [PMC]
  97. Charron C, Caille V, Jardin F, Vieillard-Baron A. Echocardiographic measurement of fluid responsiveness. Curr Opin Crit Care. 2006;12(3):249-254. [Crossref]  [PubMed]
  98. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36(6):1701-1706. [Crossref]  [PubMed]
  99. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55(1):40-46.e41. [Crossref]  [PubMed]  [PMC]
  100. Textoris J, Fouché L, Wiramus S, Antonini F, Tho S, Martin C, et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011; 15(4):R176. [Crossref]  [PubMed]  [PMC]
  101. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015; 372(14):1301-1311. [Crossref]  [PubMed]
  102. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991; 99(4):956-962. [Crossref]  [PubMed]
  103. Odom SR, Howell MD, Silva GS, Nielsen VM, Gupta A, Shapiro NI, et al. Lactate clearance as a predictor of mortality in trauma patients. J Trauma Acute Care Surg. 2013;74(4):999-1004. [Crossref]  [PubMed]
  104. Mikkelsen ME, Miltiades AN, Gaieski DF, Goyal M, Fuchs BD, Shah CV, et al. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med. 2009;37(5):1670-1677. [Crossref]  [PubMed]
  105. Kamolz LP, Andel H, Schramm W, Meissl G, Herndon DN, Frey M. Lactate: early predictor of morbidity and mortality in patients with severe burns. Burns. 2005;31(8):986-990. [Crossref]  [PubMed]
  106. Lee TR, Kang MJ, Cha WC, Shin TG, Sim MS, Jo IJ, et al. Better lactate clearance associated with good neurologic outcome in survivors who treated with therapeutic hypothermia after out-of-hospital cardiac arrest. Crit Care. 2013; 17(5):R260. [Crossref]  [PubMed]  [PMC]
  107. Arnold RC, Shapiro NI, Jones AE, Schorr C, Pope J, Casner E, et al. Multicenter study of early lactate clearance as a determinant of survival in patients with presumed sepsis. Shock. 2009;32(1):35-39. [Crossref]  [PubMed]
  108. Puskarich MA, Trzeciak S, Shapiro NI, Arnold RC, Heffner AC, Kline JA, et al. Prognostic value and agreement of achieving lactate clearance or central venous oxygen saturation goals during early sepsis resuscitation. Acad Emerg Med. 2012;19(3):252-258. [Crossref]  [PubMed]  [PMC]
  109. Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis*. Crit Care Med. 2014;42(9):2118-2125. [Crossref]  [PubMed]
  110. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752-761. [Crossref]  [PubMed]
  111. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial.Jama. 2010; 303(8):739-746. [Crossref]  [PubMed]  [PMC]
  112. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992; 101(2):509-515. [Crossref]  [PubMed]
  113. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005; 31(6):818-822. [Crossref]  [PubMed]
  114. van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013; 39(6):1034-1039. [Crossref]  [PubMed]
  115. Muller G, Mercier E, Vignon P, Henry-Lagarrigue M, Kamel T, Desachy A, et al. Prognostic significance of central venous-to-arterial carbon dioxide difference during the first 24 hours of septic shock in patients with and without impaired cardiac function. Br J Anaesth. 2017;119(2):239-248. [Crossref]  [PubMed]
  116. Luchette FA, Jenkins WA, Friend LA, Su C, Fischer JE, James JH. Hypoxia is not the sole cause of lactate production during shock. J Trauma. 2002;52(3):415-419. [Crossref]  [PubMed]
  117. McCarter FD, Nierman SR, James JH, Wang L, King JK, Friend LA, et al. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis. Life Sci. 2002;70(16):1875-1888. [Crossref]  [PubMed]
  118. Pastor CM, Billiar TR, Losser MR, Payen DM. Liver injury during sepsis. J Crit Care. 1995;10(4):183-197. [Crossref]  [PubMed]
  119. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock. 1996;6(2):89-94. [Crossref]  [PubMed]