Hyper IgE Syndrome
Deniz EYİCEa , Semra DEMİRa
aİstanbul University İstanbul Faculty of Medicine, Department of Internal Medicine, Division of Immunology and Allergy Diseases, İstanbul, Türkiye
Eyice D, Demir S. Hyper IgE syndrome. Çölkesen F, ed. Primary Immunodeficiency Diseases in Adults. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.58-66.
ABSTRACT
Hyper IgE syndrome (HIES) is a rare primary immunodeficiency disorder with high Ig E serum levels, eczematous dermatitis, and recurrent skin and pulmonary infections with the characteristic facial changes. It consists of a group of disease that include elevated IgE and similar clinicopathologic features. Most cases of HIES are sporadic but some hereditary cases of HIES were reported with autosomal dominant (AD) or autosomal recessive (AR) inheritance. Most patients with AD-HIES have a defect in STAT3 gene. There are other causative genes; DOCK8, PGM3, ZNF341, IL6ST, IL6R, CARD11, SPINK5. An elevated serum IgE level and peripheral eosinophilia are the most common laboratory findings in patients with HIES. Early diagnosis, antimicrobial prophylaxis to prevent the lung and skin infections, skin care and aggressive treatment of infections are the basis of treatment. Hematopoietic stem cell transplantation can be a choice of treatment in selected patients.
Keywords: DOCK8 protein, human; STAT3 protein, human
Citation
Referanslar
- Heimall J, Freeman A, Holland SM. Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol. 2010;38(1):32-8. [Crossref] [PubMed]
- Davis SD, Schaller J, Wedgwood RJ. Job's Syndrome. Recurrent, "cold", staphylococcal abscesses. Lancet. 1966;1(7445):1013-5. [Crossref] [PubMed]
- Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972;49(1):59-70. [Crossref] [PubMed]
- Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058-62. [Crossref] [PubMed]
- Lyons JJ, Liu Y, Ma CA, Yu X, O'Connell MP, Lawrence MG, et al. ERBIN deficiency links STAT3 and TGF-beta pathway defects with atopy in humans. J Exp Med. 2017;214(3):669-80. [Crossref] [PubMed] [PMC]
- Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet. 2017;49(8):1192-201. [Crossref] [PubMed] [PMC]
- Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046-55. [Crossref] [PubMed] [PMC]
- Schwerd T, Twigg SRF, Aschenbrenner D, Manrique S, Miller KA, Taylor IB, et al. A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J Exp Med. 2017;214(9):2547-62. [Crossref] [PubMed] [PMC]
- Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, et al. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J Allergy Clin Immunol. 2014;133(5):1400-9, 9 e1-5. [Crossref] [PubMed] [PMC]
- Minegishi Y. Hyper-IgE syndrome, 2021 update. Allergol Int. 2021;70(4):407-14. [Crossref] [PubMed]
- Gernez Y, Freeman AF, Holland SM, Garabedian E, Patel NC, Puck JM, et al. Autosomal Dominant Hyper-IgE Syndrome in the USIDNET Registry. J Allergy Clin Immunol Pract. 2018;6(3):996-1001. [Crossref] [PubMed] [PMC]
- Bergerson JRE, Freeman AF. An Update on Syndromes with a Hyper-IgE Phenotype. Immunol Allergy Clin North Am. 2019;39(1):49-61. [Crossref] [PubMed]
- Sowerwine KJ, Holland SM, Freeman AF. Hyper-IgE syndrome update. Ann N Y Acad Sci. 2012;1250:25-32. [Crossref] [PubMed] [PMC]
- Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, et al. Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692-702. [Crossref] [PubMed]
- Oikonomopoulou C, Goussetis E. Autosomal dominant hyper-IgE syndrome: When hematopoietic stem cell transplantation should be considered? Pediatr Transplant. 2020;24(5):e13699. [Crossref] [PubMed]
- Grimbacher B, Schaffer AA, Holland SM, Davis J, Gallin JI, Malech HL, et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet. 1999;65(3):735-44. [Crossref] [PubMed] [PMC]
- Schimke LF, Sawalle-Belohradsky J, Roesler J, Wollenberg A, Rack A, Borte M, et al. Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol. 2010;126(3):611-7. e1. [Crossref] [PubMed]
- Woellner C, Gertz EM, Schaffer AA, Lagos M, Perro M, Glocker EO, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(2):424-32. e8. [Crossref] [PubMed] [PMC]
- Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19(21):2607-11. [Crossref] [PubMed]
- Carter NM, Pomerantz JL. CARD11 signaling in regulatory T cell development and function. Adv Biol Regul. 2022;84:100890. [Crossref] [PubMed] [PMC]
- Stepensky P, Keller B, Buchta M, Kienzler AK, Elpeleg O, Somech R, et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol. 2013;131(2):477-85. e1. [Crossref] [PubMed]
- Beziat V, Fieschi C, Momenilandi M, Migaud M, Belaid B, Djidjik R, et al. Inherited human ZNF341 deficiency. Curr Opin Immunol. 2023;82:102326. [Crossref] [PubMed] [PMC]
- Felgentreff K, Siepe M, Kotthoff S, von Kodolitsch Y, Schachtrup K, Notarangelo LD, et al. Severe eczema and Hyper-IgE in Loeys-Dietz-syndrome - contribution to new findings of immune dysregulation in connective tissue disorders. Clin Immunol. 2014;150(1):43-50. [Crossref] [PubMed]
- Biggs CM, Keles S, Chatila TA. DOCK8 deficiency: Insights into pathophysiology, clinical features and management. Clin Immunol. 2017;181:75-82. [Crossref] [PubMed] [PMC]
- Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options - a review of 136 patients. J Clin Immunol. 2015;35(2):189-98. [Crossref] [PubMed]
- Day-Williams AG, Sun C, Jelcic I, McLaughlin H, Harris T, Martin R, et al. Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy. J Clin Immunol. 2015;35(1):92-6. [Crossref] [PubMed] [PMC]
- Keles S, Jabara HH, Reisli I, McDonald DR, Barlan I, Hanna-Wakim R, et al. Plasmacytoid dendritic cell depletion in DOCK8 deficiency: rescue of severe herpetic infections with IFN-alpha 2b therapy. J Allergy Clin Immunol. 2014;133(6):1753-5.e3. [Crossref] [PubMed] [PMC]
- Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, Garcia JA, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J Exp Med. 2014;211(13):2549-66. [Crossref] [PubMed] [PMC]
- Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13(6):612-20. [Crossref] [PubMed] [PMC]
- McDonald DR, Massaad MJ, Johnston A, Keles S, Chatila T, Geha RS, et al. Successful engraftment of donor marrow after allogeneic hematopoietic cell transplantation in autosomal-recessive hyper-IgE syndrome caused by dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2010;126(6):1304-5.e3. [Crossref] [PubMed] [PMC]
- Metin A, Tavil B, Azik F, Azkur D, Ok-Bozkaya I, Kocabas C, et al. Successful bone marrow transplantation for DOCK8 deficient hyper IgE syndrome. Pediatr Transplant. 2012;16(4):398-9. [Crossref] [PubMed]
- Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol. 2022;42(7):1508-20. [Crossref] [PubMed]
- Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY, Erichsen HC, et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet. 2014;95(1):96-107. [Crossref] [PubMed] [PMC]
- Spencer S, Kostel Bal S, Egner W, Lango Allen H, Raza SI, Ma CA, et al. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J Exp Med. 2019;216(9):1986-98. [Crossref] [PubMed] [PMC]
- Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, Kilic SS, et al. Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med. 2015;212(10):1641-62. [Crossref] [PubMed] [PMC]
- Stuvel K, Heeringa JJ, Dalm V, Meijers RWJ, van Hoffen E, Gerritsen SAM, et al. Comel-Netherton syndrome: A local skin barrier defect in the absence of an underlying systemic immunodeficiency. Allergy. 2020;75(7):1710-20. [Crossref] [PubMed] [PMC]
- Levy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, et al. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med. 2023;220(2). [Crossref] [PubMed] [PMC]
- Kolukisa B, Baser D, Akcam B, Danielson J, Bilgic Eltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2022;77(3):1004-19. [Crossref] [PubMed] [PMC]