IMAGING BIOMARKERS IN WET AGE-RELATED MACULAR DEGENERATION
Cemal Özsaygılı1
Nurettin Bayram2
1Kayseri City Hospital, Department of Ophthalmology, Kayseri, Türkiye
2Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Türkiye
Özsaygılı C, Bayram N. Imaging Biomarkers in Wet Age-Related Macular Degeneration. In: Çıtırık M, Şekeryapan Gediz B, editors. AgeRelated Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.219-231.
ABSTRACT
The use of optical coherence tomography (OCT) as a standard in retinal examination has enabled detailed characterization of neovascular age-related macular degeneration (nAMD) disease morphology and significant advances have been made in diagnosis. In addition, significant breakthroughs have been made in terms of treatment with the introduction of drug regimens that neutralize vascular endothelial growth factor (VEGF) intravitreally (anti-VEGF) into routine treatment and their benefits.
However, despite this, treatment results are not yet as expected and disease management should become more efficient in real life. This can be solved by identifying biomarkers that are valid for visual acuity, lesion activity and finally prognosis. Identification of biomarkers can guide treatment decisions for both individuals and societies. With advanced OCT devices and technology, quantitative and qualitative data can be obtained regarding the morphological features of the disease and the degeneration stages of nAMD accompanied by exudation and fibrosis. In clinical studies and routine clinical practice, central retinal thickness is used as a biomarker for re-treatment decisions, while fluid localization in different layers of the retina provides more meaningful information on prognosis. In relation to this, intraretinal cystoid fluid has been accepted to have a negative effect on vision and is considered to have a detrimental effect on the retinal structure if it persists during treatment. Subretinal fluid, unlike intraretinal fluid, is known to provide advantages on visual function and reduce the likelihood of progression to geographic atrophy. Retinal pigment epithelium tear has generally been accepted as the most important biomarker responsible for unresponsiveness to treatment and decreased visual acuity during pro-re-nata (PRN) treatment regimen. Changes in neuroretinal structure are closely related to irreversible damage to cellular elements responsible for visual function and negative visual prognosis. New OCT technologies provide important prognostic data by providing detailed imaging of changes at the photoreceptor-RPE-choriocapillary unit level. Retinal biomarkers obtained with the help of high-resolution imaging can be used for effective personalized treatment for the individual, disease prediction for the population, development of new therapeutic strategies and new targets.
Keywords: Imaging biomarkers; Neovascular age related macular degeneration; Optic coherence tomography; Optic coherence tomography angiography
Kaynak Göster
Referanslar
- Evans JR, Fletcher AE, Wormald RP, Ng ES, Stirling S, Smeeth L, et all. Prevalence of visual impairment in people aged 75 years and older in Britain: results from the MRC trial of assessment and management of older people in thecommunity. Br J Ophthalmol. 2002;86(7):795-800. [Crossref] [PubMed] [PMC]
- Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et all. Beckman Initiative for Macular Research Classification Committee. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120(4):844-51. [Crossref] [PubMed] [PMC]
- Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018;243(3):213-221. [Crossref] [PubMed] [PMC]
- Villani E, Vujosevic S. Foreword: Biomarkers and Surrogate Endpoints in Ophthalmic Clinical Research. Invest Ophthalmol Vis Sci. 2017;58:(6). [Crossref] [PubMed]
- Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci. 1995;36(3):718-29. [Link]
- NOVOTNY HR, ALVIS D. A method of photographing fluorescence in circulating blood of the human eye. Tech Doc Rep SAMTDR USAF Sch Aerosp Med. 1960;60-82:1-4. [Crossref] [PubMed]
- Flower RW, Hochheimer BF. Clinical infrared absorption angiography of the choroid. Am J Ophthalmol. 1972;73(3):458-9. [Crossref] [PubMed]
- Flower RW, Hochheimer BF. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976;138(2):33-42. [Link]
- Faatz H, Farecki ML, Rothaus K, Gunnemann F, Gutfleisch M, Lommatzsch A, et all. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: evaluation of a new quantitative method. Eye (Lond). 2019;33(9):1466-1471. [Crossref] [PubMed] [PMC]
- Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et all. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 201213;20(4):4710-25. [Crossref] [PubMed] [PMC]
- Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017;101(1):16-20. [Crossref] [PubMed]
- Lumbroso B, Rispoli M, Savastano MC. longitudinal optical coherence tomography-angiography study of type 2 naive choroidal neovascularization early response after treatment. Retina. 2015;35(11):2242-51. [Crossref] [PubMed]
- Parravano M, Borrelli E, Sacconi R, Costanzo E, Marchese A, Manca D, et all. A Comparison Among Different Automatically Segmented Slabs to Assess Neovascular AMD using Swept Source OCT Angiography. Transl Vis Sci Technol. 2019;8(2):8. [Crossref] [PubMed] [PMC]
- Savastano MC, Rispoli M, Lumbroso B, Di Antonio L, Mastropasqua L, Virgili G, et all. Fluorescein angiography versus optical coherence tomography angiography: FA vs OCTA Italian Study. Eur J Ophthalmol. 2021;31(2):514-520. [Crossref] [PubMed]
- Lupidi M, Schiavon S, Cerquaglia A, Fruttini D, Gujar R, Muzi A, et all. Real-world outcomes of anti-VEGF therapy in treatment-naïve neovascular age-related macular degeneration diagnosed on OCT angiography: the REVEAL study. Acta Ophthalmol. 2022;100(4):936-942. [Crossref] [PubMed]
- Rosenfeld PJ. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2016;57(9):14-26. [Crossref] [PubMed] [PMC]
- Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied eh. optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A New Diagnostic Challenge. Retina. 2015;35(11):2219-28. [Crossref] [PubMed]
- Mastropasqua R, Di Antonio L, Di Staso S, Agnifili L, Di Gregorio A, Ciancaglini M, et all. Optical Coherence Tomography Angiography in Retinal Vascular Diseases and Choroidal Neovascularization. J Ophthalmol. 2015;2015:343515. [Crossref] [PubMed] [PMC]
- Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et all.. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology. 2020 May;127(5):616-636. [Crossref] [PubMed] [PMC]
- Coscas F, Cabral D, Pereira T, Geraldes C, Narotamo H, Miere A, et all. Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission. PLoS One. 2018 O;13(10):e0205513. [Crossref] [PubMed] [PMC]
- Turgut B, Yildirim H. The causes of hyperreflective dots in optical coherence tomography excluding diabetic macular edema and retinal venous occlusion§. Open Ophthalmol J. 2015;9:36-40. [Crossref] [PubMed] [PMC]
- Bringmann A, Syrbe S, Görner K, Kacza J, Francke M, Wiedemann P, et all. The primate fovea: Structure, function and development. Prog Retin Eye Res. 2018;66:49-84. [Crossref] [PubMed]
- Dansingani KK, Tan ACS, Gilani F, Phasukkijwatana N, Novais E, Querques L, et all. Subretinal Hyperreflective Material Imaged With Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;169:235-248. [Crossref] [PubMed]
- Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J Ophthalmol. 2021;6096017. [Crossref] [PubMed] [PMC]
- Willoughby AS, Ying GS, Toth CA, Maguire MG, Burns RE, Grunwald JE, et all. Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2015;122(9):1846-53. [Link]
- Ehlers JP, Patel N, Kaiser PK, Heier JS, Brown DM, Meng X, et all. The Association of Fluid Volatility With Subretinal Hyperreflective Material and Ellipsoid Zone Integrity in Neovascular AMD. Invest Ophthalmol Vis Sci. 2022 1;63(6):17. [Crossref] [PubMed] [PMC]
- Sulzbacher F, Pollreisz A, Kaider A, Kickinger S, Sacu S, Schmidt-Erfurth U; Vienna Eye Study Center. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol. 2017;95(4):414-420. [Crossref] [PubMed]
- Zayit-Soudry S, Moroz I, Loewenstein A. Retinal pigment epithelial detachment. Surv Ophthalmol. 2007 May-;52(3):227-43. [Crossref] [PubMed]
- Yasuhara S, Miyata M, Ooto S, Tamura H, Ueda-Arakawa N, Uji A, et all. A. Predictors of retinal pigment epithelium tear development after treatment for neovascular age-related macular degeneration using swept source optical coherence tomography angiography. Retina. 2022;42(6):1020-1027. [Crossref] [PubMed]
- Zweifel SA, Engelbert M, Laud K, Margolis R, Spaide RF, Freund KB. Outer retinal tubulation: a novel optical coherence tomography finding. Arch Ophthalmol. 2009;127(12):1596-602. [Crossref] [PubMed]
- Wolff B, Matet A, Vasseur V, Sahel JA, Mauget-Faÿsse M. En Face OCT Imaging for the Diagnosis of Outer Retinal Tubulations in Age-Related Macular Degeneration. J Ophthalmol. 2012;2012:542417. [Crossref] [PubMed] [PMC]
- Al-Sheikh M, Iafe NA, Phasukkijwatana N, Sadda SR, Sarraf D. biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography. Retina. 2018;38(2):220-230. [Crossref] [PubMed]
- Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, et all. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435-44. [Crossref] [PubMed] [PMC]
- Rispoli M, Savastano MC, Lumbroso B. Quantitative Vascular Density Changes in Choriocapillaris Around CNV After Anti-VEGF Treatment: Dark Halo. Ophthalmic Surg Lasers Imaging Retina. 2018;49(12):918-924. [Crossref] [PubMed]
- Xu D, Dávila JP, Rahimi M, Rebhun CB, Alibhai AY, Waheed NK, et all. Long-term Progression of Type 1 Neovascularization in Age-related Macular Degeneration Using Optical Coherence Tomography Angiography. Am J Ophthalmol. 2018;187:10-20. [Crossref] [PubMed]
- Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, et all. European Society of Retina Specialists. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014;98(9):1144-67. [Crossref] [PubMed] [PMC]
- Schmidt-Erfurth U, Waldstein SM, Deak GG, Kundi M, Simader C. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology. 2015;122(4):822-32. [Crossref] [PubMed]
- Waldstein SM, Simader C, Staurenghi G, Chong NV,Mitchell P, Jaffe GJ, et all. Morphology and Visual Acuity in Aflibercept and Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration in the VIEW Trials. Ophthalmology. 2016;123(7):1521-9. [Crossref] [PubMed]
- Querques G, Srour M, Massamba N, Georges A, Ben Moussa N, Rafaeli O, et all. Functional characterization and multimodal imaging of treatment-naive "quiescent" choroidal neovascularization. Invest Ophthalmol Vis Sci. 2013 21;54(10):6886-92. [Crossref] [PubMed]
- Ding W, Young M, Bourgault S, Lee S, Albiani DA, Kirker AW, et all. Automatic detection of subretinal fluid and sub-retinal pigment epithelium fluid in optical coherence tomography images. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7388-91. [Crossref] [PubMed]
- Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D'alterio G, et all. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J Ophthalmol. 2021;2021:9994098. [Crossref] [PubMed] [PMC]
- Schmidt-Erfurth U, Waldstein SM. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 2016;50:1-24. [Crossref] [PubMed]
- Schmidt-Erfurth U, Chong V, Loewenstein A, Larsen M, Souied E, Schlingemann R, et all. European Society of Retina Specialists. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA). Br J Ophthalmol. 2014;98(9):1144-67. [Crossref] [PubMed] [PMC]
- Golbaz I, Ahlers C, Stock G, Schütze C, Schriefl S, Schlanitz F, et all. Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy. Invest Ophthalmol Vis Sci. 2011;52(3):1599-605. [Crossref] [PubMed]
- Sasaki M, Kato Y, Fujinami K, Hirakata T, Tsunoda K, Watanabe K, et all. Advanced quantitative analysis of thesub-retinal pigment epithelial space in recurrent neovascular age-related macular degeneration. PLoS One. 2017 2;12(11):e0186955. [Crossref] [PubMed] [PMC]
- Simader C, Ritter M, Bolz M, Deák GG, Mayr-Sponer U, Golbaz I, et all. Morphologic parameters relevant for visual outcome during anti-angiogenic therapy of neovascular age-related macular degeneration. Ophthalmology. 2014;121(6):1237-45. [Crossref] [PubMed]