IMAGING FOR STRUCTURAL HEART PROCEDURES: FOCUS ON COMPUTED TOMOGRAPHY (CT)

Süleyman Barutçu

Muğla Sıtkı Koçman University, Faculty of Medicine, Training and Research Hospital, Department of Cardiology, Muğla, Türkiye

Barutçu S. Imaging for Structural Heart Procedures: Focus on Computed Tomography (CT). In: Tanık VO, Özlek B, editors. Invasive Interventions in Structural Heart Diseases: Comprehensive Techniques. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.45-56.

ABSTRACT

Imaging plays a critical role in the planning, guidance, and post-procedural assessment of structural heart interventions. While echocardiography, fluoroscopy, and magnetic resonance imaging (MRI) are commonly used; computed tomography (CT) has become increasingly important, especially for pre-procedural planning and post-procedural follow-up in various structural heart interventions. CT enables highly precise measurement of the target structure’s dimensions. Additionally, it provides valuable insights into the access route. Moreover, preprocedural data sets derived by CT can be utilized to determine optimal fluoroscopic projection angles, enhancing visualization of the target structure and guiding device placement effectively. High resolution and 3D anatomical visualization provided by CT is essential for planning complex structural heart interventions such as: transcatheter aortic valve implantation (TAVI), Transcatheter Mitral Valve Repair (TMVR), left atrial appendage occlusion (LAAO) and paravalvular leak closure. Cardiac CT has also proven beneficial in the follow-up of complex structural heart interventions, particularly for detecting post-procedural complications such as leaflet thickeningor trombosis, paravalvular leaks or coronary ostial occlusions.

Keywords: Transcatheter aortic valve replacement; Heart valves; Left atrial appendage closure; Cardiac imaging techniques

Referanslar

  1. Baumgartner H, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J, 2017;38(36):2739-2791. [Crossref]  [PubMed]
  2. Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, and Leipsic JA, "SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR)," J. Cardiovasc. Comput. Tomogr.,2012;6(6):366-380. [Crossref]  [PubMed]
  3. Francone M, Budde RPJ, Bremerich J, et al. CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR) [published correction appears in Eur Radiol. 2020;30(7):4143-4144. [Crossref]  [PubMed]  [PMC]
  4. Willson AB, Webb JG, Labounty TM, et al. 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J Am Coll Cardiol. 2012;59(14):1287-1294. [Link]
  5. Barbanti M, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation, 2013;128(3):244-253. [Crossref]  [PubMed]
  6. D. Suchá et al., "Does the aortic annulus undergo conformational change throughout the cardiac cycle? A systematic review," Eur. Heart J. Cardiovasc. Imaging, 2015;16(12):1307-1317. [Link]
  7. Van Belle E, et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: analysis of predictors and impact on long-term mortality: insights from the FRANCE2 Registry. Circulation, 2014;129(13):1415-1427. [Link]
  8. Mooney j, et al. Imaging for structural heart procedures: focus on computed tomography. Accessed: Feb. 12, 2025. [Online]. [Link]
  9. Hansson NC, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J. Cardiovasc. Comput. Tomogr. 2015;9(5):382-392, 2015, doi: 10.1016/j.jcct.2015.04.002. [Link]
  10. Pawade T, Sheth T, Guzzetti E, Dweck MR, Clavel MA, Why and How to Measure Aortic Valve Calcification in Patients With Aortic Stenosis. JACC Cardiovasc. Imaging, 2019;12(9):1835-1848. [Crossref]  [PubMed]
  11. Wang TKM, Flamm SD, Schoenhagen P, et al. Diagnostic and Prognostic Performance of Aortic Valve Calcium Score with Cardiac CT for Aortic Stenosis: A Meta-Analysis. Radiol Cardiothorac Imaging. 2021;3(4):e210075. Published 2021 Aug 26. [Crossref]  [PubMed]  [PMC]
  12. Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease [published correction appears in Eur Heart J. 2022 Jun 1;43(21):2022. Eur Heart J. 2022;43(7):561-632. [Link]
  13. Dvir D, Leipsic J, Blanke P, et al. Coronary obstruction in transcatheter aortic valve-in-valve implantation: preprocedural evaluation, device selection, protection, and treatment. Circ Cardiovasc Interv. 2015;8(1):e002079. [Link]
  14. Ribeiro HB, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur. Heart J. 2018;39(8):687-695. [Crossref]  [PubMed]
  15. Salgado R, Cadour F, Cau R, Saba L. Current Status of CT Imaging Before Common Transcatheter Interventions for Structural Heart Disease. Diagnostics. 2025;15(1):97. [Crossref]  [PubMed]  [PMC]
  16. Chan J, Marwan M, Schepis T, Ropers D, Du L, Achenbach S, Images in cardiovascular medicine. Cardiac CT assessment of prosthetic aortic valve dysfunction secondary to acute thrombosis and response to thrombolysis. Circulation, vol. 2009;120(19):1933-1934. [Crossref]  [PubMed]
  17. Pache G, et al. Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves.Eur. Heart J. 2016;37(28):2263-2271. [Crossref]  [PubMed]
  18. Bursi F, Enriquez-Sarano M, Nkomo VT, et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation. 2005;111(3):295-301. [Crossref]  [PubMed]
  19. Blanke P, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J. Cardiovasc. Comput. Tomogr.2014;8(6):459-467. [Crossref]  [PubMed]  [PMC]
  20. Kohli K, Wei ZA, Yoganathan AP, Oshinski JN, Leipsic J, Blanke P. Transcatheter Mitral Valve Planning and the Neo-LVOT: Utilization of Virtual Simulation Models and 3D Printing. Curr Treat Options Cardiovasc Med. 2018;20(12):99. Published 2018 Oct 26. [Crossref]  [PubMed]
  21. Blanke P, et al. Multimodality Imaging in the Context of Transcatheter Mitral Valve Replacement: Establishing Consensus Among Modalities and Disciplines. JACC Cardiovasc. Imaging. 2015;8(10):1191-1208. Oct. 2015, doi: 10.1016/j.jcmg.2015.08.004. [Crossref]  [PubMed]
  22. Hell MM, Achenbach S. CT support of cardiac structural interventions. Br. J. Radiol. 2019;92(1098):20180707. [Crossref]  [PubMed]  [PMC]
  23. Grover R, et al. Role of MDCT Imaging in Planning Mitral Valve Intervention. Curr. Cardiol. Rep., 2018;20,16. [Link]
  24. ESC Guidelines for the management of atrial fibrillation." Accessed: Feb. 11, 2025. [Online]. [Link]
  25. Spencer RJ, et al. Changes in Left Atrial Appendage Dimensions Following Volume Loading During Percutaneous Left Atrial Appendage Closure. JACC Cardiovasc. Interv., 2015;8(15):1935-1941. [Crossref]  [PubMed]
  26. Wang Y, Di Biase L, Horton RP, Nguyen T, Morhanty P, Natale A. Left atrial appendage studied by computed tomography to help planning for appendage closure device placement. J. Cardiovasc. Electrophysiol. 2010;21(9):973-982. [Crossref]  [PubMed]
  27. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6(2):185-194. [Crossref]  [PubMed]
  28. Ionescu A, Fraser AG, Butchart EG. Prevalence and clinical significance of incidental paraprosthetic valvar regurgitation: a prospective study using transoesophageal echocardiography. Heart Br. Card. Soc. 2003;89(11):1316-1321. [Crossref]  [PubMed]  [PMC]
  29. Leon MB, et al. Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery. N. Engl. J. Med. 2010;363(17):1597-1607. [Crossref]
  30. Lesser JR, Han BK, Newell M, Schwartz RS, Pedersen W, Sorajja P. Use of cardiac CT angiography to assist in the diagnosis and treatment of aortic prosthetic paravalvular leak: A practical guide. J. Cardiovasc. Comput. Tomogr. 2015;9(3):159-164. [Crossref]  [PubMed]
  31. Koo et al. Paravalvular leakage in patients with prosthetic heart valves: cardiac computed tomography findings and clinical features. Eur. Heart J. Cardiovasc. Imaging. 2018;19(12):1419-1427. [Crossref]  [PubMed]
  32. O'Neill AC, Martos R, Murtagh G, et al. Practical tips and tricks for assessing prosthetic valves and detecting paravalvular regurgitation using cardiac CT. J Cardiovasc Comput Tomogr. 2014;8(4):323-327. [Crossref]  [PubMed]