IMMUNOLOGICAL AND NON-IMMUNOLOGICAL ANAPHYLAXIS

Tuba Karakurt

İstanbul Medeniyet University, Faculty of Medicine, Department of Pediatric Immunology and Allergic Diseases, İstanbul, Türkiye

Karakurt T. Immunological and Non-Immunological Anaphylaxis. In: Harmancı K, editor. Childhood Anaphylaxis: New Developments in Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.37-48.

ABSTRACT

Anaphylaxis is a severe, systemic, and potentially life-threatening hypersensitivity reaction that requires immediate recognition and treatment. Mast cells and/or basophils are key effector cells involved in the complex and interconnected mechanisms of anaphylactic reactions. Understanding their roles and examining their activation pathways is essential. Activation of these cells can occur through both immunological and non-immunological pathways. Immunological mechanisms include the classical Immunglobulin (Ig) E-mediated pathway and an IgG-mediated pathway, while non-immunological pathways involve direct mast cell activation through various receptors. At the core of immunologic anaphylaxis is the activation of mast cells and basophils, predominantly via antigen-specific IgE antibodies binding to high-affinity FceRI receptors. Cross-linking of these receptors by allergens initiates a cascade of intracellular signaling events, culminating in degranulation and the release of potent mediators such as histamine, tryptase, prostaglandins, and leukotrienes. These mediators modulate the classical clinical manifestations of anaphylaxis, including vasodilation, bronchoconstriction, increased vascular permeability, and cardiovascular collapse. However, non-IgE-mediated pathways, particularly those involving IgG immune complexes and complement activation, have also been implicated in anaphylactic responses, especially in experimental models and certain clinical settings. IgG-mediated anaphylaxis involves the activation of macrophages, basophils, and neutrophils, with platelet-activating factor, rather than histamine, as the principal mediator. The mechanisms observed with various pharmacological agents such as dextran and von Willebrand factor, immune complexes have been shown to activate the complement system and subsequently produce anaphylatoxins (C3a, C5a) that activate mast cells and other cells, causing increased vascular permeability and smooth muscle contraction. Mas-related G protein-coupled receptor member X2 (MRGPRX2), expressed on mast cells, can be activated by various agents such as icatibant, ciprofloxacin, mivacurium and cisatracurium, as well as selected opioids and local anesthetics, leading to degranulation and anaphylaxis-like symptoms. The contact system, comprising factor XII, prekallikrein, high-molecular-weight kininogen, and kallikrein, plays a role in anaphylaxis through the generation of bradykinin, a potent vasoactive peptide, that contributes to hypotension and angioedema in anaphylaxis. In addition to all these mechanisms, various factors -such as genetic predisposition, hormonal influences, certain medications, age-related health conditions, mast cell-related disorders, physical exertion, infections, and pre-existing conditions affecting the heart, mental health, or chronic respiratory diseasescan all contribute to the progression and severity of anaphylactic reactions. Understanding the diverse mechanisms underlying anaphylaxis is crucial for accurate diagnosis, effective management, and the development of targeted therapies.

Keywords: Childhood anaphylaxis; IgE-mediated; IgG-mediated; The complement system; MRGPRX2; The contact system

Referanslar

  1. Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World allergy organization anaphylaxis guidance 2020. World Allergy Organ J. 2020;13(10). [Crossref]  [PubMed]  [PMC]
  2. Johansson SGO, Hourihane JOB, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56(9):813824.00001.x [Crossref]  [PubMed]
  3. Muraro A, Roberts G, Worm M, Bilò MB, Brockow K, Fernández Rivas M, et al. Anaphylaxis: guidelines from the European Academy of Allergy and Clinical Immunology. Allergy. 2014;69(8):1026-1045. [Crossref]  [PubMed]
  4. Zilberstein J, McCurdy MT, Winters ME. Anaphylaxis. J Emerg Med. 2014;47(2):182-187. [Crossref]  [PubMed]
  5. Finkelman FD. Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol. 2007;120(3):506-515. [Crossref]  [PubMed]
  6. Gouel-Chéron A, Dejoux A, Lamanna E, Bruhns P. Animal Models of IgE Anaphylaxis. Biology (Basel). 2023;12(7). [Crossref]  [PubMed]  [PMC]
  7. Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2017;140(2):335-348. [Crossref]  [PubMed]  [PMC]
  8. Sala-Cunill A, Cardona V. Definition, Epidemiology, and Pathogenesis. Curr Treat Options Allergy. 2015;2(3):207-217. [Crossref]
  9. LoVerde D, Iweala OI, Eginli A, Krishnaswamy G. Anaphylaxis. Chest. 2018;153(2):528-543. [Crossref]  [PubMed]  [PMC]
  10. Fowler J, Lieberman P. Pathophysiology of Immunologic and Nonimmunologic Systemic Reactions Including Anaphylaxis. Immunol Allergy Clin North Am. 2022;42(1):27-43. [Crossref]  [PubMed]
  11. Lieberman P, Garvey LH. Mast Cells and Anaphylaxis. Curr Allergy Asthma Rep. 2016;16(3):1-7. [Crossref]  [PubMed]
  12. Bruhns P, Chollet-Martin S. Mechanisms of human drug-induced anaphylaxis. J Allergy Clin Immunol. 2021;147(4):1133-1142. [Crossref]  [PubMed]
  13. Dreskin SC, Stitt JM. Anaphylaxis. In: Adkinson NF Jr, Bochner BS, Burks AW, et al., eds. Middleton's Allergy: Principles and Practice. 9th ed. Philadelphia, PA: Elsevier; 2020:1228-1246.
  14. Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol. 2016;137(6):1631-1645. [Crossref]  [PubMed]  [PMC]
  15. Jimenez-Rodriguez TW, Garcia-Neuer M, Alenazy LA, Castells M. Anaphylaxis in the 21st century: Phenotypes, endotypes, and biomarkers. J Asthma Allergy. 2018;11:121-142. [Crossref]  [PubMed]  [PMC]
  16. Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organization Journal 2015;8(1):1-12. [Crossref]  [PubMed]  [PMC]
  17. Bacharier LB, Geha RS. Molecular mechanisms of IgE regulation. J Allergy Clin Immunol. 2000;105(2):547-558. [Crossref]  [PubMed]
  18. Stone KD, Prussin C, Metcalfe DD. IgE, Mast Cells, Basophils, and Eosinophils. J Allergy Clin Immunol. 2010;125(2):73-80. [Crossref]  [PubMed]  [PMC]
  19. Sala-Cunill A, Cardona V. Biomarkers of anaphylaxis, beyond tryptase. Curr Opin Allergy Clin Immunol. 2015;15(4):329-336. [Crossref]  [PubMed]
  20. Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol. 2009;124(4):639-646. [Crossref]  [PubMed]  [PMC]
  21. Kunder CA, St John AL, Abraham SN. Mast cell modulation of the vascular and lymphatic endothelium. Blood. 2011;118(20):5383-5393. [Crossref]  [PubMed]  [PMC]
  22. Gilfillan AM, Beaven MA. Regulation of mast cell responses Karakurt Immunological and Non-Immunological Anaphylaxis in health and disease. Crit Rev Immunol. 2011;31(6):475-530. [Crossref]  [PubMed]  [PMC]
  23. Krishnaswamy G, Ajitawi O, Chi DS. The human mast cell: an overview. Methods Mol Biol. 2006;315:13-34.
  24. Elieh Ali Komi D, Wöhrl S, Bielory L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol. 2020;58(3):342-365. [Crossref]  [PubMed]
  25. Ben-Shoshan M, Clarke AE. Anaphylaxis: past, present and future. Allergy. 2011;66(1):1-14. [Crossref]  [PubMed]
  26. Gill P, Jindal NL, Jagdis A, Vadas P. Platelets in the immune response: Revisiting platelet-activating factor in anaphylaxis. J Allergy Clin Immunol. 2015;135(6):1424-1432. [Crossref]  [PubMed]
  27. Castells M. Mast cell mediators in allergic inflammation and mastocytosis. Immunol Allergy Clin North Am. 2006;26(3):465-485. [Crossref]  [PubMed]
  28. Parente R, Giudice V, Cardamone C, Serio B, Selleri C, Triggiani M. Secretory and Membrane-Associated Biomarkers of Mast Cell Activation and Proliferation. Int J Mol Sci. 2023;24(8). [Crossref]  [PubMed]  [PMC]
  29. Butterfield JH. Nontryptase Urinary and Hematologic Biomarkers of Mast Cell Expansion and Mast Cell Activation: Status 2022. J Allergy Clin Immunol Pract. 2022;10(8):19741984. [Crossref]  [PubMed]
  30. Kulinski JM, Proia RL, Larson EM, Metcalfe DD, Olivera A. S1P4 regulates passive systemic anaphylaxis in mice but is dispensable for canonical ige-mediated responses in mast cells. Int J Mol Sci. 2018;19(5). [Crossref]  [PubMed]  [PMC]
  31. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol. 2010;688:141-155. [Crossref]  [PubMed]  [PMC]
  32. Jo H, Shim K, Jeoung D. The Crosstalk between FcRI and Sphingosine Signaling in Allergic Inflammation. Int J Mol Sci. 2022;23(22). [Crossref]  [PubMed]  [PMC]
  33. Olivera A, Mizugishi K, Tikhonova A, Ciaccia L, Odom S, Proia RL, et al. The Sphingosine Kinase-Sphingosine-1-Phosphate Axis Is a Determinant of Mast Cell Function and Anaphylaxis. Immunity. 2007;26(3):287-297. [Crossref]  [PubMed]
  34. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, et al. Transactivation of Sphingosine-1-Phosphate Receptors by FcRI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis. Journal of Experimental Medicine. 2004;199(7):959-970. [Crossref]  [PubMed]  [PMC]
  35. Jolly PS, Rosenfeldt HM, Milstien S, Spiegel S. The roles of sphingosine-1-phosphate in asthma. Mol Immunol. 2002;38(16-18):1239-1245. [Crossref]  [PubMed]
  36. Oskeritzian CA, Price MM, Hait NC, Kapitonov D, Falanga YT, Morales JK, et al. Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. Journal of Experimental Medicine. 2010;207(3):465-474. [Crossref]  [PubMed]  [PMC]
  37. Khodoun MV, Strait R, Armstrong L, Yanase N, Finkelman FD. Identification of markers that distinguish IgEfrom IgG-mediated anaphylaxis. Proc Natl Acad Sci U S A. 2011;108(30):12413-12418. [Crossref]  [PubMed]  [PMC]
  38. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16):3716-3725. [Crossref]  [PubMed]
  39. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119(24):5640-5649. [Crossref]  [PubMed]
  40. Cianferoni A. Non-IgE-mediated anaphylaxis. J Allergy Clin Immunol. 2021;147(4):1123-1131. [Crossref]  [PubMed]
  41. Stafforini DM, McIntyre TM, Zimmerman GA, Prescott SM. Platelet-activating factor, a pleiotrophic mediator of physiological and pathological processes. Crit Rev Clin Lab Sci. 2003;40(6):643-672. [Crossref]  [PubMed]
  42. Vadas P, Gold M, Perelman B, Liss GM, Lack G, Blyth T, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28-35. [Crossref]  [PubMed]
  43. Stafforini DM. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther. 2009;23(1):73-83. [Crossref]  [PubMed]
  44. Jönsson F, Mancardi DA, Kita Y, Karasuyama H, Iannascoli B, Van Rooijen N, et al. Mouse and human neutrophils induce anaphylaxis. J Clin Invest. 2011;121(4):1484-1496. [Crossref]  [PubMed]  [PMC]
  45. Pascal M, Muñoz-Cano R, Milà J, Sanz ML, Diaz-Perales A, Sánchez-López J, et al. Nonsteroidal anti-inflammatory drugs enhance IgE-mediated activation of human basophils in patients with food anaphylaxis dependent on and independent of nonsteroidal anti-inflammatory drugs. Clin Exp Allergy. 2016;46(8):1111-1119. [Crossref]  [PubMed]
  46. Rispens T, Derksen NIL, Commins SP, Platts-Mills TA, Aalberse RC. IgE production to -gal is accompanied by elevated levels of specific IgG1 antibodies and low amounts of IgE to blood group B. PLoS One. 2013;8(2). [Crossref]  [PubMed]  [PMC]
  47. Jönsson F, De Chaisemartin L, Granger V, Gouel-Chéron A, Gillis CM, Zhu Q, et al. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci Transl Med. 2019;11(500). [Crossref]  [PubMed]
  48. Zwirner J, Götze O, Sieber A, Kapp A, Begemann G, Zu Karakurt Immunological and Non-Immunological Anaphylaxis berbier T, et al. The human mast cell line HMC-1 binds and responds to C3a but not C3a(desArg). Scand J Immunol. 1998;47(1):19-24. [Crossref]  [PubMed]
  49. Muñoz-Cano RM, Bartra J, Picado C, Valero A. Mechanisms of Anaphylaxis Beyond IgE. J Investig Allergol Clin Immunol. 2016;26(2):73-82. [Crossref]  [PubMed]
  50. Khodoun M, Strait R, Orekov T, Hogan S, Karasuyama H, Herbert DR, et al Peanuts can contribute to anaphylactic shock by activating complement. J Allergy Clin Immunol. 2009;123(2):342-351. [Crossref]  [PubMed]  [PMC]
  51. Wölbing F, Fischer J, Köberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68(9):1085-1092. [Crossref]  [PubMed]
  52. Hedin H, Richter W, Messmer K, Renck H, Ljungström KG, Laubenthal H. Incidence, pathomechanism and prevention of dextran-induced anaphylactoid / anaphylactic reactions in man - Dev Biol Stand.1980:48:179-89.
  53. Bergamaschini L, Mannucci PM, Federici AB, Coppola R, Guzzoni S, Agostoni A. Posttransfusion anaphylactic reactions in a patient with severe von Willebrand disease: role of complement and alloantibodies to von Willebrand factor J Lab Clin Med. 1995;125(3):348-55.
  54. Weiszhár Z, Czúcz J, Révész C, Rosivall L, Szebeni J, Rozsnyay Z. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. Eur J Pharm Sci. 2012;45(4):492-498. [Crossref]  [PubMed]
  55. Rodriguez MJ, Aranda A, Fernandez TD, Cubells-Baeza N, Torres MJ, Gomez F, et al. LPS promotes Th2 dependent sensitisation leading to anaphylaxis in a Pru p 3 mouse model. Sci Rep. 2017;7. [Crossref]  [PubMed]  [PMC]
  56. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237-241. [Crossref]  [PubMed]  [PMC]
  57. Baldo BA. MRGPRX2, drug pseudoallergies, inflammatory diseases, mechanisms and distinguishing MRGPRX2and IgE/FcRI-mediated events. Br J Clin Pharmacol. 2023;89(11):3232-3246. [Crossref]  [PubMed]
  58. Babina M, Guhl S, Artuc M, Zuberbier T. Allergic FcRIand pseudo-allergic MRGPRX2-triggered mast cell activation routes are independent and inversely regulated by SCF. Allergy. 2018;73(1):256-260. [Crossref]  [PubMed]
  59. Reddy VB, Graham TA, Azimi E. A single amino acid in MRGPRX2 necessary for binding and activation by pruritogens. J Allergy Clin Immunol. 2017;140(6):1726-1728. [Crossref]  [PubMed]  [PMC]
  60. Pinckard RN, Tanigawa C, Halonen M. IgE-induced blood coagulation alterations in the rabbit: consumption of coagulation factors XII, XI, and IX in vivo J Immunol. 1975;115(2):525-32. [Crossref]  [PubMed]
  61. Sala-Cunill A, Björkqvist J, Senter R, Guilarte M, Cardona V, Labrador M, et al. Plasma contact system activation drives anaphylaxis in severe mast cell-mediated allergic reactions. Journal of Allergy and Clinical Immunology. 2015;135(4):1031-1043.e6. [Crossref]  [PubMed]
  62. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008;358(23):2457-2467. [Crossref]  [PubMed]  [PMC]
  63. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26(6):669-675. [Crossref]  [PubMed]  [PMC]
  64. van der Linden PW, Hack CE, Eerenberg AJ, Struyvenberg A, van der Zwan JK. Activation of the contact system in insect-sting anaphylaxis: association with the development of angioedema and shock. Blood. 1993;15;82(6):1732-1739. [Crossref]  [PubMed]