Importance of Positron Emission Tomography in Patients with Early Remodeling

kardiyoloji-15-5-kitap-kapak

Hülya YALÇINa, Hasan İkbal ATILGANa

aHatay Mustafa Kemal University Tayfur Ata Sökmen Faculty of Medicine, Department of Nuclear Medicine, Hatay, Türkiye

ABSTRACT
Oxidation of fatty acids is the major energy source in human heart. However, myocardium can also use glucose, lactate, aminoacids and ketones depending to the altered metabolic pathways and substrate availability. Oxidation of fatty acids is the primary source of ATP in normally perfused heart. But in the hypertrophied heart, fatty acid oxidation decreases and glycolysis increases when compared with normal heart. Glycolytic activity increases for energy production in cardiac hypertrophy and congestive heart failure. The most common used radiopharmaceutical is Fluorine-18 flurodeoxyglucose in positron emission tomography/computed tomography imaging to evaluate the effect of hypertension, hypertrophic cardiomyopathy and pulmonary hypertension. Glucose metabolism generally increases in the early remodelling of hypertension, but after progression to severe or decompansated hypertrophy glucose metabolism decreases.
Keywords: Ventricular remodeling; positron emission tomography computed tomography; fluorodeoxyglucose F18

Referanslar

  1. Razeghi P, young Me, alcorn Jl, Moravec cs, frazier oh, taegtmeyer h. Metabolic gene expression in fetal and failing human heart. circulation. 2001;104(24):2923-31. [Crossref]  [PubMed]
  2. Lopaschuk Gd, spafford Ma, Marsh dr. Glycolysis is predominant source of myocardial atP production immediately after birth. am J Physiol. 1991;261(6 Pt 2):h1698-705. [Crossref]  [PubMed]
  3. Lopaschuk Gd, belke dd, Gamble J, Itoi t, schönekess bo. regulation of fatty acid oxidation in the mammalian heart in health and disease. biochim biophys acta. 1994;1213(3):263-76. [Crossref]  [PubMed]
  4. Kolwicz sc Jr, tian r. Glucose metabolism and cardiac hypertrophy. cardiovasc res. 2011;90(2):194-201. [Crossref]  [PubMed]  [PMC]
  5. Allard Mf, schönekess bo, henning sl, english dr, lopaschuk Gd. contribution of oxidative metabolism and glycolysis to atP production in hypertrophied hearts. am J Physiol. 1994;267(2 Pt 2):h742-50. [Crossref]  [PubMed]
  6. Bishop sP, altschuld ra. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. am J Physiol. 1970;218(1):153-9. [Crossref]  [PubMed]
  7. Zhong M, alonso ce, taegtmeyer h, Kundu bK. Quantitative Pet imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo. J nucl Med. 2013;54(4):609-15. [Crossref]  [PubMed]  [PMC]
  8. Ahmadi a, ohira h, Mielniczuk lM. fdG Pet imaging for identifying pulmonary hypertension and right heart failure. curr cardiol rep. 2015;17(1):555. [Crossref]  [PubMed]
  9. Grover-McKay M, schwaiger M, Krivokapich J, Perloff JK, Phelps Me, schelbert hr. regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J am coll cardiol. 1989;13(2):317-24. [Crossref]  [PubMed]
  10. Kagaya y, Ishide n, takeyama d, Kanno y, yamane y, shirato K, et al. differences in myocardial fluoro-18 2-deoxyglucose uptake in young versus older patients with hypertrophic cardiomyopathy. am J cardiol. 1992;69(3):242-6. [Crossref]  [PubMed]
  11. Shiba n, Kagaya y, Ishide n, otani h, takeyama d, yamane y, et al. heterogeneity of myocardial fluoro-18 2-deoxyglucose uptake in patients with apical hypertrophic cardiomyopathy. Jpn circ J. 1997;61(3):223-30. [Crossref]  [PubMed]
  12. Uehara t, Ishida y, hayashida K, shimonagata t, Miyake y, sago M, et al. Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: assessment by f-18-fdG Pet study. ann nucl Med. 1998;12(2):95-103. [Crossref]
  13. Tadamura e, Kudoh t, hattori n, Inubushi M, Magata y, Konishi J, et al. Impairment of bMIPP uptake precedes abnormalities in oxygen and glucose metabolism in hypertrophic cardiomyopathy. J nucl Med. 1998;39(3):390-6.
  14. Friehs I, Moran aM, stamm c, colan sd, takeuchi K, cao-danh h, et al. Impaired glucose transporter activity in pressure-overload hypertrophy is an early indicator of progression to failure. circulation. 1999;100(19 suppl):II187- 93. [Crossref]  [PubMed]
  15. Perrone-filardi P, bacharach sl, dilsizian V, Panza Ja, Maurea s, bonow ro. regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophic cardiomyopathy. am J cardiol. 1993;72(2):199-204. [Crossref]  [PubMed]
  16. Tadamura e, tamaki n, Matsumori a, Magata y, yonekura y, nohara r, et al. Myocardial metabolic changes in hypertrophic cardiomyopathy. J nucl Med. 1996;37(4):572-7.
  17. Hamirani ys, Kundu bK, Zhong M, Mcbride a, li y, davogustto Ge, et al. noninvasive detection of early metabolic left ventricular remodeling in systemic hypertension. cardiology. 2016;133(3):157-62. [Crossref]  [PubMed]  [PMC]
  18. tavares de Melo Md, Giorgi McP, assuncao an Jr, dantas rn Jr, araujo filho Ja, Parga filho Jr, et al. decreased glycolytic metabolism in non-compaction cardiomyopathy by 18f-fluoro-2-deoxyglucose positron emission tomography: new insights into pathophysiological mechanisms and clinical implications. eur heart J cardiovasc Imaging. 2017;18(8):915-21. [Crossref]  [PubMed]
  19. Aoyama r, takano h, Kobayashi y, Kitamura M, asai K, amano y, et al. evaluation of myocardial glucose metabolism in hypertrophic cardiomyopathy using 18f-fluorodeoxyglucose positron emission tomography. Plos one. 2017;12(11):e0188479. [Crossref]  [PubMed]  [PMC]
  20. Handa n, Magata y, Mukai t, nishina t, Konishi J, Komeda M. Quantitative fdG-uptake by positron emission tomography in progressive hypertrophy of rat hearts in vivo. ann nucl Med. 2007;21(10):569-76. [Crossref]  [PubMed]
  21. Oikawa M, Kagaya y, otani h, sakuma M, demachi J, suzuki J, et al. Increased [18f]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J am coll cardiol. 2005;45(11):1849-55. [Crossref]  [PubMed]
  22. Van Wolferen sa, Marcus Jt, Westerhof n, spreeuwenberg Md, Marques KM, bronzwaer JG, et al. right coronary artery flow impairment in patients with pulmonary hypertension. eur heart J. 2008;29(1):120-7. [Crossref]  [PubMed]
  23. Ohira h, deKemp r, Pena e, davies ra, stewart dJ, chandy G, et al. shifts in myocardial fatty acid and glucose metabolism in pulmonary arterial hypertension: a potential mechanism for a maladaptive right ventricular response. eur heart J cardiovasc Imaging. 2016;17(12):1424-31. [Crossref]  [PubMed]
  24. Lundgrin el, Park MM, sharp J, tang Wh, thomas Jd, asosingh K, et al. fasting 2-deoxy-2-[18f]fluoro-d-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. ann am thorac soc. 2013;10(1):1-9. [Crossref]  [PubMed]  [PMC]
  25. Tatebe s, fukumoto y, oikawa-Wakayama M, sugimura K, satoh K, Miura y, et al. enhanced [18f]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study. eur heart J cardiovasc Imaging. 2014;15(6):666-72. [Crossref]  [PubMed]
  26. Wang l, li W, yang y, Wu W, cai Q, Ma X, et al. Quantitative assessment of right ventricular glucose metabolism in idiopathic pulmonary arterial hypertension patients: a longitudinal study. eur heart J cardiovasc Imaging. 2016;17(10):1161-8. [Crossref]  [PubMed]