in vitro Diagnostics Testing and Future Biochemistry in the Diagnosis of Inflammation

biyomedikalozel5-1-24kapak

N. Nuray ULUSUa,b
aKoç University Faculty of Medicine, Department of Medical Biochemistry, İstanbul, Türkiye
bKoç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye

Ulusu NN. in vitro diagnostics testing and future biochemistry in the diagnosis of inflammation. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.13-7.

Article Language: EN

ABSTRACT
The study of biochemistry concepts, chemical processes, and in vitro diagnostic devices and their related methods is changing very rapidly in the current century. Biochemical diagnostic, measurement of parameters, and verification are very important for the evolving laboratory industry to solve current health problems with new perspectives. Technology and clinical laboratory tests are expeditiously, purposefully evolving. The scientific inquiry has many new routes today and all scientific research areas are trying to find new hypotheses, expectations, theories, formulations, suppositions, assumptions, artificial intelligence, and technology of electronic, electric, and chemical engineering methodologies for a better, healthy, and long life. The scientists are working on developing multifunctional wireless micro-scale miniature robots for diagnostic testing. In near future, the in vitro diagnostic tests would be much more accurate, rapid, condition-specific, easy to use, portable, different from the manual and traditional procedures, and performed outside the traditional laboratories with advanced nanorobotic and telecare systems.

Keywords: in vitro diagnostics; the imagination of future biochemistry; smart devices; inflammation; micro/nanorobots

Referanslar

  1. Neagu AN, Jayathirtha M, Baxter E, Donnelly M, Petre BA, Darie CC. Applications of tandem mass spectrometry (ms/ms) in protein analysis for biomedical research. Molecules. 2022;27(8):2411. [Crossref]  [PubMed]  [PMC]
  2. Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, et al. Digital technologies in the public health response to COVID-19. Nat Med. 2020;26(8):1183-92. [Crossref]  [PubMed]
  3. Sitti M. Miniature devices: Voyage of the microrobots. Nature. 2009;458(7242):1121-2. [Crossref]  [PubMed]
  4. Giltinan J, Sridhar V, Bozuyuk U, Sheehan D, Sitti M. 3D Microprinting of Iron Platinum Nanoparticle-Based Magnetic Mobile Microrobots. Adv Intell Syst. 2020;3(1):2000204. [Crossref]  [PubMed]  [PMC]
  5. Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. Micromachines (Basel). 2022;13(3):481. [Crossref]  [PubMed]  [PMC]
  6. Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. Adv Sci (Weinh). 2020;7(21):2002203. [Crossref]  [PubMed]  [PMC]
  7. Chang X, Feng Y, Guo B, Zhou D, Li L. Nature-inspired micro/nanomotors. Nanoscale;14(2):219-38. [Crossref]  [PubMed]
  8. Luthfikasari R, Patil TV, Patel DK, Dutta SD, Ganguly K, Espinal MM, et al. Plant-Actuated Micro-Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. Small. 2022;18(30):e2201417. [Crossref]  [PubMed]
  9. Medina-Sánchez M, Xu H, Schmidt OG. Micro- and nano-motors: the new generation of drug carriers. Ther Deliv. 2018;9(4):303-6. [Crossref]  [PubMed]
  10. Wu Z, Li T, Gao W, Xu T, Jurado-Sánchez B, Li J, et al. Cell-Membrane-Coated Synthetic Nanomotors for Effective Biodetoxification. Adv Funct Mater. 2015;25:3881-7. [Crossref]
  11. Zhuang J, Young AP, Tsung CK. Integration of Biomolecules with Metal-Organic Frameworks. Small. 2017;13(32). [Crossref]  [PubMed]
  12. Xu H, Medina-Sánchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano. 2018;12(1):327-7. [Crossref]  [PubMed]
  13. Valero-Sarmiento JM, Ahmmed P, Bozkurt A. In Vivo Evaluation of a Subcutaneously Injectable Implant with a Low-Power Photoplethysmography ASIC for Animal Monitoring. Sensors (Basel). 2020;20(24):7335. [Crossref]  [PubMed]  [PMC]
  14. Suzuki K, Shivappa N, Kawado M, Yamada H, Hashimoto S, Wakai K, et al. Association between dietary inflammatory index and serum C-reactive protein concentrations in the Japan Collaborative Cohort Study. Nagoya J Med Sci. 2020;82(2):237-9.
  15. Ulusu NN. Curious Cases of the Enzymes. J Med Biochem. 2015;34(3):271-81. [Crossref]  [PubMed]  [PMC]
  16. Ulusu NN. Evolution of Enzyme Kinetic Mechanisms. J Mol Evol. 2015;80(5-6):251-7. [Crossref]  [PubMed]  [PMC]
  17. Işeri-Erten SÖ, Dikmen ZG, Ulusu NN. Comparison of Spectrophotometric and Fluorimetric Methods in Evaluation of Biotinidase Deficiency. J Med Biochem. 2016;35(2):123-9. [Crossref]  [PubMed]  [PMC]
  18. Ma X, Hortelão AC, Patiño T, Sánchez S. Enzyme Catalysis To Power Micro/Nanomachines. ACS Nano. 2016;10(10):9111-22. [Crossref]  [PubMed]  [PMC]
  19. Aydemir D, Gecili F, Özdemir NN Ulusu. Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase. JBB. 2020;129(6):679-86. [Crossref]  [PubMed]
  20. Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. In vitro interaction of glutathione S-transferase-pi enzyme with glutathione-coated silver sulfide quantum dots: A novel method for biodetection of glutathione S-transferase enzyme. Chem Biol Drug Des. 2019;94(6):2094-102. [Crossref]  [PubMed]
  21. Aydemir D, Hashemkhani M, Durmusoglu EG, Acar HY, Ulusu NN. A new substrate for glutathione reductase: Glutathione coated Ag2S quantum dots. Talanta. 2019;194:501-506. [Crossref]  [PubMed]
  22. Aydemir D, Hashemkhani M, Acar HY, Ulusu NN. Evaluation of the biocompatibility of the GSH-coated Ag2S quantum dots in vitro: a perfect example for the non-toxic optical probes. Mol Biol Rep. 2020;47(6):4117-29. [Crossref]  [PubMed]
  23. Aydemir D, Ulusu NN. Comment on the: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes (Spectrochim Acta A Mol Biomol Spectrosc. 2019;220:117104. Spectrochim Acta A Mol Biomol Spectrosc. 2020;229:117792. [Crossref]  [PubMed]
  24. Bowen RA, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb). 2014;24(1):31-44. [Crossref]  [PubMed]  [PMC]
  25. Silvetti MS. Pacemaker and implantable cardioverter defibrillator implantation in pediatric patients. Minerva Cardioangiol. 2007;55(6):803-13.
  26. Selam JL, Charles MA. Devices for insulin administration. Diabetes Care. 1990;13(9):955-79. [Crossref]  [PubMed]
  27. Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17(2):75-87. [Crossref]  [PubMed]  [PMC]
  28. Chen F, Ni W, Li W, Li H. Cochlear Implantation and Rehabilitation. Adv Exp Med Biol. 2019;1130:129-44. [Crossref]  [PubMed]
  29. Kim JI, Cho JD, Son J, Choi CH, Wu HG, Park JM. Contact lens-type ocular in vivo dosimeter for radiotherapy. Med Phys. 2020;47(2):722-35. [Crossref]  [PubMed]
  30. Joseph X, Akhil V, Arathi A, Mohanan PV. Comprehensive Development in Organ-On-A-Chip Technology. J Pharm Sci. 2022;111(1):18-31. [Crossref]  [PubMed]
  31. Busek M, Aizenshtadt A, Amirola-Martinez M, Delon L, Krauss S. Academic User View: Organ-on-a-Chip Technology. Biosensors (Basel). 2022;12(2):126. [Crossref]  [PubMed]  [PMC]
  32. Ko J, Park D, Lee S, Gumuscu B, Jeon NL. Engineering Organ-on-a-Chip to Accelerate Translational Research. Micromachines (Basel). 2022;13(8):1200. [Crossref]  [PubMed]  [PMC]
  33. Ammann KR, Ahamed T, Sweedo AL, Ghaffari R, Weiner YE, Slepian RC, et al Human motion component and envelope characterization via wireless wearable sensors. BMC Biomed Eng. 2020;2:3. [Crossref]  [PubMed]  [PMC]
  34. Frediani G, Botondi B, Quartini L, Zonfrillo G, Bocchi L, Carpi F. Wearable Kinematic Monitoring System Based on Piezocapacitive Sensors. Stud Health Technol Inform. 2019;261:103-8.
  35. Ahmad Tarar A, Mohammad U, K Srivastava S. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors (Basel). 2020;10(6):56. [Crossref]  [PubMed]  [PMC]
  36. Gorski MA, Mimoto SM, Khare V, Bhatkar V, Combs AH. Real-Time Digital Biometric Monitoring during Elite Athletic Competition: System Feasibility with a Wearable Medical-Grade Sensor. Digit Biomark. 2021;5(1):37-43. [Crossref]  [PubMed]  [PMC]
  37. Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors (Basel). 2020;10(12):205. [Crossref]  [PubMed]  [PMC]
  38. Li T, Wan M, Mao C. Research Progress of Micro/Nanomotors for Cancer Treatment. Chempluschem. 2020;85(12):2586-98. [Crossref]  [PubMed]
  39. Ranjitkar P. Toilet Lab: Diagnostic Tests on Smart Toilets? Clin Chem. 2018;64(7):1128-9. [Crossref]  [PubMed]
  40. Hosoe N, Limpias Kamiya KJL, Hayashi Y, Sujino T, Ogata H, Kanai T. Current status of colon capsule endoscopy. Dig Endosc. 2021;33(4):529-37. [Crossref]  [PubMed]
  41. Polak-Witka K, Rudnicka L, Blume-Peytavi U, Vogt A. The role of the microbiome in scalp hair follicle biology and disease. Exp Dermatol. 2020;29(3):286-94. [Crossref]  [PubMed]
  42. Aydemir D, Öztaşcı B, Barlas N, Ulusu NN. Effects of butylparaben on antioxidant enzyme activities and histopathological changes in rat tissues. Arh Hig Rada Toksikol. 2019;70(4):315-24. [Crossref]  [PubMed]
  43. Aydemir D, Karabulut G, Şimşek G, Gok M, Barlas N, Ulusu NN. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats. Biol Trace Elem Res. 2018;186(2):474-88. [Crossref]  [PubMed]
  44. Aydemir D, Karabulut G, Gok M, Barlas N, Ulusu NN. Data the DEHP induced changes on the trace element and mineral levels in the brain and testis tissues of rats. Data Brief. 2019;26:104526. [Crossref]  [PubMed]  [PMC]
  45. Aydemir D, Oztasci B, Barlas N, Ulusu NN. Influence of the butylparaben administration on the oxidative stress metabolism of liver, kidney and spleen. Turk J Biochem. 2020;45:689-94. [Crossref]
  46. Iorizzo M, Tosti A, Starace M, Baran R, Daniel CR 3rd, Di Chiacchio N, et al. Isolated nail lichen planus: An expert consensus on treatment of the classical form. J Am Acad Dermatol. 2020;83(6):1717-23. [Crossref]  [PubMed]
  47. FitzGerald O, Ogdie A, Chandran V, Coates LC, Kavanaugh A, Tillett W, et al. Psoriatic arthritis. Nat Rev Dis Primers. 2021;7(1):59. [Crossref]  [PubMed]
  48. Ebersole JL, Graves CL, Gonzalez OA, Dawson D 3rd, Morford LA, Huja PE, et al. Aging, inflammation, immunity and periodontal disease. Periodontol 2000. 2016;72(1):54-75. [Crossref]  [PubMed]
  49. Kireev D, Ameri SK, Nederveld A, Kampfe J, Jang H, Lu N, et al. Fabrication, characterization and applications of graphene electronic tattoos. Nat Protoc. 2021;16(5):2395-417. [Crossref]  [PubMed]