Inborn Errors of Purine Nucleotide Metabolism That Affect Muscle (AMP Deaminase Deficiency)
Aynur KÜÇÜKÇONGAR YAVAŞa
aAnkara Bilkent City Hospital, Clinic of Pediatric Metabolism Diseases, Ankara, Türkiye
ABSTRACT
Adenosine monophosphate deaminase is part of the purine nucleotide cycle which converts adenosine monophosphate to inosine monophosphate and caused ammonia secretion. Three isozymes described as muscle, liver, erythrocyte forms. Muscle adenosine monophosphate deaminase deficiency is common. Primary (genetic) deficiency is one of the most common inherited metabolic defects, transmitted as an autosomal recessive trait. The enzyme encoded in the AMPD1 gene. Homozygous mutations in this gene cause enzyme deficieny. Secondary (acquired) deficiency can be seen in the some neuromuscular disorders. Many subjects are asymptomatic, others suffer from fatigue, cramps, myalgia. The onset of the symptoms is noted in late childhood or adulthood. Other rare manifestations include myoglobinuria, elevated creatine kinase. Rhabdomyolysis, myoglobinuria can be triggered by acute viral infections generally. Ischemic test shows absent of elevation venous plasma ammonia. Final diagnosis is established by mutation analysis, histochemical or biochemical assay. Sypmtoms can be decreased with usage of D-ribose and xylitol.
Keywords: Muscle adenosine deaminase deficiency; purine matabolism; metabolic myopathy
Citation
Referanslar
- Van den Berghe G, Bontemps F, Vincent MF, Van den Bergh F. The purine nucleotide cycle and its molecular defects. Progr Neurobiol. 1992; 39:547-61. [Crossref] [PubMed]
- Yang H, Wang Q, Xi Y, Yu W, Xie D, Morisaki H, et al. AMPD2 plays important roles in regulating hepatic glucose and lipid metabolism. Mol Cell Endocrinol. 2023;9:112039. [Crossref] [PubMed]
- Ogawa T, Kouzu H, Osanami A, Tatekoshi Y, Sato T, Kuno A, et al. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol Rep. 2023;11(4):e15608. [Crossref] [PubMed] [PMC]
- Miller SG, Hafen PS, Law AS, Springer CB, Logsdon DL, O'Connell TM, et al. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism. 2021;123:154864. [Crossref] [PubMed] [PMC]
- Norman B, Glenmark B, Jansson E. Muscle AMP deaminase deficiency in 2% of a healthy population. Muscle Nerve. 1995;18(2):239-41. [Crossref] [PubMed]
- Hafen PS, Law AS, Matias C, Miller SG, Brault JJ. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1. J Appl Physiol (1985). 2022;133(5):1055-66. [Crossref] [PubMed] [PMC]
- Fishbein WN, Armbrustmacher VW, Griffin JL. Myoadenylate deaminase deficiency: a new disease of muscle. Science. 1978; 200: 545-8. [Crossref] [PubMed]
- Fishbein WN. Primary, secondary, and coincidental types of myoadenylate deaminase deficiency. Ann Neurol. 1999;45(4):547-8. [Crossref] [PubMed]
- Hanisch F, Joshi P, Zierz S. AMP deaminase deficiency in skeletal muscle is unlikely to be of clinical relevance. J Neurol. 2008;255(3):318-22. [Crossref] [PubMed]
- Zhang L, Thyagarajan D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sci. 2022;23;12(12):1605. [Crossref] [PubMed] [PMC]
- Darras BT. Myoadenylate deaminase deficiency. In: Jones HR Jr, De Vivo DC, Darras BT, eds. Neuromuscular Disorders of Infancy, Childhood, and Adolescence. A Clinican's Approach. Amsterdam: Butterwordth Heinemann; 2003:861-6.
- Castro-Gago M, Gómez-Lado C, Pérez-Gay L, Eirís-Puñal J, Martínez EP, García-Consuegra I, et al. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant. J Child Neurol. 2011;26(6):734-7. [Crossref] [PubMed]
- Finsterer J, Schoser B, Stollberger C. Myoadenylate deaminase gene mutation associated with left ventricular hypertrabeculation. Acta Cardiol 2004;59:453-6. [Crossref] [PubMed]
- de Gregorio C, Morabito G, Musumeci O, Donato R, Toscano A. Right ventricular obstructive hypertrophic cardiomyopathy in primary myo-adenylate deaminase deficiency. Acta Myol. 2011;30(1):46-8.
- Fricker RM, Raffelsberger T, Rauch-Shorny S, Finsterer J, Müller-Reible C, Gilly H, et al. Positive malignant hyperthermia susceptibility in vitro test in a patient with mitochondrial myopathy and myoadenylate deaminase deficiency. Anesthesiology. 2002;97(6):1635-7. [Crossref] [PubMed]
- Smolenski RT, Rybakowska I, Turyn J, Romaszko P, Zabielska M, Taegtmeyer A, et al. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther. 2014;28(2):183-9. [Crossref] [PubMed] [PMC]
- Baeza-Trinidad R, Brito-Diaz Y. Severe rhabdomyolysis in a heterozygotic patient with myoadenylate deaminase deficiency and SARS-CoV-2 infection. Intern Med J. 2023;53(4):648-9. [Crossref] [PubMed]
- Sabina RL, Fishbein WN, Pezeshkpour G, Clarke PR, Holmes EW. Molecular analysis of the myoadenylate deaminase deficiencies. Neurology. 1992;42(1):170-9. [Crossref] [PubMed]
- Sabina RL, Swain JL, Holmes EW: Myoadenylate deaminase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Diseases. 7th ed. New York: McGraw-Hill; 1995. p.1077-84.
- Cheng J, Morisaki H, Sugimoto N, Dohi A, Shintani T, Kimura E, et al. Effect of isolated AMP deaminase deficiency on skeletal muscle function. Mol Genet Metab Rep. 2014;16:1:51-9. [Crossref] [PubMed] [PMC]
- Patten BM. Beneficial effect of D-ribose in patient with myoadenylate deaminase deficiency. Lancet. 1982;1(8280):1071. [Crossref] [PubMed]
- Gross M, Reiter S, Zöllner N. Metabolism of D-ribose administered continuously to healthy persons and to patients with myoadenylate deaminase deficiency. Klin Wochenschr. 1989;467(23):1205-13. [Crossref] [PubMed]
- Bruyland M, Ebinger G. Beneficial effect of a treatment with xylitol in a patient with myoadenylate deaminase deficiency. Clin Neuropharmacol. 1994;17(5):492-3. [Crossref] [PubMed]