Inflammation and Carcinogenesis

Selman SÖKMENa , Berke MANOĞLUa
aDokuz Eylül University Faculty of Medicine, Department of General Surgery, İzmir, Türkiye

Sökmen S, Manoğlu B. Inflammation and carcinogenesis. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.106-22.

Article Language: EN

ABSTRACT
Cancer is not one disease. Recent findings suggest that polarized inflammation plays different roles during tumor development and progression. The complexity of its origins, cellular behaviours, and molecular features thwarted researchers’ efforts to grasp its multifaceted biology. The complexity in cancer lies not only in its genetics, but also in its versatile responses to an environment in which it has to compete to survive and thrive. It has been difficult to directly ask how they acquire and utilize nutrients in vivo. Advances in clinical imaging show us how tumors adjust their metabolic profiles to adapt to local conditions, even exhibiting heterogeneity within the same tumor mass. There is an active and dynamic communication between a tumor and the surrounding microenvironment, including the local immune components. Probing this interplay led to the identification of checkpoint blockade approaches that are generating excitement in the clinic. Further searching out the layered functional interactions between cancer cells and the immune system may open up new access points that could be targeted. Genomics, metabolism, and microenvironment-are only three examples of how our growing capacity to measure, analyze, and capitalize on the complexity inherent to cancer appears to be turning the achievements to scientists’ advantage. With increased understanding of the specific mechanisms that regulate cancer-associated inflammation, there will be further opportunities to alter the course of cancer with selective and targeted anti-inflammatory treatment. The ability to map out the complexities of not only the tumor itself but also the environment it resides in is expanding the scope of translational research and drug development from a tumor-centric targeted view to a system-wide perspective that takes into account dynamic host response and tumor microenvironment communication.

Keywords: Inflammation; carcinogenesis; DNA damage; tumor microenvironment; inflammatory mediators

Referanslar

  1. Sacristán C, et al. Quid pro Quo: A Tumor is Not Alone. Trends Mol Med. 2017. [Crossref]  [PubMed]
  2. Grivennikov IS, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010;140:883-99. [Crossref]  [PubMed]  [PMC]
  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100: 57-70. [Crossref]  [PubMed]
  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144: 646-74. [Crossref]  [PubMed]
  5. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-45. [Crossref]  [PubMed]
  6. Liu J, Lin PC, Zhou BP. Inflammation fuels tumor progress and metastasis. Curr Pharm Des. 2015;21(21):3032-40. [Crossref]  [PubMed]  [PMC]
  7. Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacology&Therapeutics 2021;218: 107670. [Crossref]  [PubMed]  [PMC]
  8. Denk D, Greten FR. Inflammation: the incubator of the tumor microenvironment. 2022;8(11):901-14. [Crossref]  [PubMed]
  9. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917): 860-7. [Crossref]  [PubMed]  [PMC]
  10. Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51(1):27-41. [Crossref]  [PubMed]  [PMC]
  11. Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Yanagimoto MS, et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021;22:5421. [Crossref]  [PubMed]  [PMC]
  12. Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers. 2021;13:921. [Crossref]  [PubMed]  [PMC]
  13. Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. Front Oncol. 2012;2(58):1-18. [Crossref]  [PubMed]  [PMC]
  14. Singh R, Mishra MK, Aggarwal H. Inflammation, Immunity, and Cancer. Mediators Inflamm. 2017;6027305. [Crossref]  [PubMed]  [PMC]
  15. Dupré A, Malik HZ. Inflammation and cancer: What a surgical oncologist should know. Eur J Surg Oncol. 2018;44(5):566-570. [Crossref]  [PubMed]
  16. Murata M. Inflammation and cancer. Environ Health Prev Med. 2018;23(1):50. [Crossref]  [PubMed]  [PMC]
  17. Sica A, Porta C. Role of tumor-associated macrophages in cancer related inflammation. In: Siemann DW, ed. Tumor Microenvironment. Oxford: Wiley-Blackwell; 2011. p.77-98. [Crossref]
  18. Polyak K, Haviv I, Campbell GI. Co-evolution of tumor cells and their microenvironment. Trends in Genetics. 2008;25(1):30-9. [Crossref]  [PubMed]
  19. Quesnel B. Tumor Dormancy: Long-Term Survival in a Hostile Environment. In: Enderling H, Almog N, Hlatky L, eds. Systems Biology of Tumor Dormancy. 1st ed. New York: Springer; 2013. p.181-201. [Crossref]  [PubMed]
  20. Cell editorial team. Cancer: The Road Ahead. Cell. 2017 Feb 9;168(4):545-546. [Crossref]  [PubMed]
  21. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15(11):e493-503. [Crossref]  [PubMed]
  22. Demaria S, et al. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010;33(4):335-51. [Crossref]  [PubMed]  [PMC]
  23. Kanda Y, Osaki M, Okada F. Chemopreventive strategies for inflammation-related carcinogenesis: current status and future direction. Int. J. Mol. Sci. 2017;18:867. [Crossref]  [PubMed]  [PMC]
  24. Udagawa T, Wood M. Tumor-stromal cell interactions and opportunities for therapeutic intervention. Current Opinion in Pharmacology 2010;10:369-74. [Crossref]  [PubMed]
  25. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826-31. [Crossref]  [PubMed]  [PMC]
  26. Bhome R, Bullock MD, Al Saihati HA, Goh RW, Primrose JN, Sayan AE, et al. A top-down view of the tumor microenvironment: structure, cells and signaling. Front Cell Dev Biol. 2015;3:33. [Crossref]  [PubMed]  [PMC]
  27. Park JH, Roxburgh CS, McMillan DC. Comment on 'Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis'. Br J Cancer. 2014;111(12):2372. [Crossref]  [PubMed]  [PMC]
  28. Galon J, Fridman WH, Pagès F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67(5):1883-6. [Crossref]  [PubMed]
  29. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605-21. [Crossref]  [PubMed]
  30. Lehuédé C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer Res. 2016;76(18):5201-8. [Crossref]  [PubMed]
  31. Hahnfeldt P. The Host Support Niche as a Control Point for Tumor Dormancy: Implications for Tumor Development and Beyond. In: Enderling H, Almog N, Hlatky L, eds. Systems Biology of Tumor Dormancy. 1st ed. New York: Springer; 2013. pp:19-37. [Crossref]  [PubMed]
  32. Bruni D, Angell HK, Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer. 2020;20(11):662-80. [Crossref]  [PubMed]
  33. Lusby R, Dunne P, Tiwari VK. Tumour invasion and dissemination. Biochem Soc Trans. 2022;50(3):1245-57. [Crossref]  [PubMed]  [PMC]
  34. Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol. 2021;18(5): 261-79. [Crossref]  [PubMed]  [PMC]
  35. Gupta PG, Massagué J. Cancer metastasis: building a framework. Cell 2006; 127(17):679-96. [Crossref]  [PubMed]
  36. Nakamura N. Reexamining the role of tissue inflammation in radiation carcinogenesis: a hypothesis to explain an earlier onset of cancer. Int J Radiat Biol. 2021;97(10):1341-51. [Crossref]  [PubMed]
  37. Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 2022;30(3):289-300. [Crossref]  [PubMed]  [PMC]
  38. Zhai Z, Dong W, Sun Y, Gu Y, Ma J, Wang B, et al. Vitamin-microbiota crosstalk in intestinal inflammation and carcinogenesis. Nutrients 2022;14: 3383. [Crossref]  [PubMed]  [PMC]
  39. Crusz SM, Balkwill FR. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015;12:584-96. [Crossref]  [PubMed]