Inflammation and Microbiota

Özge Kamer KARALAR PEKUZa , Nur ARSLANa
aDokuz Eylül University Faculty of Medicine, Division of Pediatric Nutrition and Metabolism, İzmir, Türkiye

Karalar Pekuz ÖK, Arslan N. Inflammation and microbiota. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.73-9.

Article Language: EN

ABSTRACT
The gut microbiome is a complex ecosystem in the host body. It lives in balance with its host. The peaceful coexistence of trillions of microorganisms in the human body is called symbiosis. Symbiosis is necessary for the host to live a healthy life. The intestinal barrier is a complex formation that separates the external environment from the sterile body environment. The structure and function of the intestinal barrier and the role of healthy microbiota in the protection of the intestinal barrier, as well as its effect on the local and systemic immune system, are important for understanding the relationship between inflammation and microbiota. Dysbiosis is defined as the disruption of the intestinal microbial ecosystem; the decrease in diversity of microbiota; the decline of some species and the dominance of the others. Dysbiosis leads to effects such as disruption of the energy balance in the body and triggering inflammation, which are associated with many diseases in humans. It has been shown that there are mechanistic relationships between intestinal dysbiosis and inflammation-induced obesity, atherosclerosis, autoimmune diseases and neurological disorders. The integrity of the intestinal barrier, diversities in microbial species, and the presence of metabolites such as short-chain fatty acids, trimethylamine oxide and indole derivatives of tryptophan are significant in the pathogenesis of all these diseases.

Keywords: Intestinal microbiota; immune system; short chain fatty acids; mucus layer; atherosclerosis; arthritis

Referanslar

  1. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 2013;11(7):497-504. [Crossref]  [PubMed]
  2. Grover M, Kashyap PC. Germ-free mice as a model to study effect of gut microbiota on host physiology. Neurogastroenterol Motil. 2014;26:745-8. [Crossref]  [PubMed]  [PMC]
  3. Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022;33(4):247-65. [Crossref]  [PubMed]
  4. Kayama H, Okumura R, Takeda K. Interaction between the microbiota, epithelia, and immune cells in the intestine. Annu Rev Immunol 2020;38:23-48. [Crossref]  [PubMed]
  5. Hertli S, Zimmermann P. Molecular interactions between the intestinal microbiota and the host. Mol Microbiol 2022. [Crossref]  [PubMed]  [PMC]
  6. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell T, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011;13(5):517-26. [Crossref]  [PubMed]  [PMC]
  7. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018;50(2):e450. [Crossref]  [PubMed]  [PMC]
  8. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016;167:1339-53.e211. [Crossref]  [PubMed]  [PMC]
  9. Litvak Y, Byndloss MX, Baumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362(6418):9076. [Crossref]  [PubMed]  [PMC]
  10. Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, et al. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Front Nutr. 2021;8:718356. [Crossref]
  11. Garabatos N, Santamaria P. Gut microbial antigenic mimicry in autoimmunity. Front Immunol. 2022;13:873607. [Crossref]  [PubMed]  [PMC]
  12. Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via ınappropriate post-translational modification of host proteins. Front Microbiol. 2016;7:84. [Crossref]  [PubMed]  [PMC]
  13. Wang Y, Wei J, Zhang W, Doherty M, Zhang Y, Xie H, et al. Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. EBioMedicine. 2022;80:104055. [Crossref]  [PubMed]  [PMC]
  14. Miyauchi E, Shimokawa C, Steimle A, Desai MS, Ohno H. The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nat Rev Immunol. 2022. [Crossref]  [PubMed]
  15. Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett. 2014;588(22):4244-9. [Crossref]  [PubMed]  [PMC]
  16. Zekeridou A, Gilbert B, Finckh A, Giannopoulou C. Periodontitis in first degree-relatives of ındividuals with rheumatoid arthritis: a short narrative review. Front Oral Health. 2022;3:895753. [Crossref]  [PubMed]  [PMC]
  17. Mahdavi-Roshan M, Salari A, Kheirkhah J, Ghorbani Z. the effects of probiotics on ınflammation, endothelial dysfunction, and atherosclerosis progression: a mechanistic overview. Heart Lung Circ. 2022;31(5):e45-e71. [Crossref]  [PubMed]
  18. Ramírez-Macías I, Orenes-Piñero E, Camelo-Castillo A, Rivera-Caravaca JM, López-García C, Marín F. Novel insights in the relationship of gut microbiota and coronary artery diseases. Crit Rev Food Sci Nutr 2022;62(14):3738-50. [Crossref]  [PubMed]
  19. Anto L, Blesso CN. Interplay between diet, the gut microbiome, and atherosclerosis: Role of dysbiosis and microbial metabolites on inflammation and disordered lipid metabolism. J Nutr Biochem. 2022;105:108991. [Crossref]  [PubMed]
  20. Wang C, Deng H, Liu F, Yin Q, Xia L. Role of gut microbiota in the immunopathology of atherosclerosis: Focus on immune cells. Scand J Immunol. 2022;e13174. [Crossref]  [PubMed]
  21. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. [Crossref]  [PubMed]  [PMC]
  22. Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE -/- mice. BMC Microbiol. 2016;16(1):264. [Crossref]  [PubMed]  [PMC]
  23. Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiol. 2018;3:1461-71. [Crossref]  [PubMed]  [PMC]
  24. Segain JP, Bletiere DR, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000;47(3):397-403. [Crossref]  [PubMed]  [PMC]
  25. Arslan N. Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 2014;20(44):16452-63. [Crossref]  [PubMed]  [PMC]
  26. Lee JH, Park JH. Host-microbial interactions in metabolic diseases: from diet to immunity. J Microbiol. 2022;60(6):561-75. [Crossref]  [PubMed]
  27. Laursen MF, Sakanaka M, van Burg N, Mörbe U, Andersen D, Pekmez CT, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol 2021;6(11):1367-82. [Crossref]  [PubMed]  [PMC]
  28. Bostick JW, Schonhoff AM, Mazmanian SK. Gut microbiome-mediated regulation of neuroinflammation. Curr Opin Immunol. 2022;76:102177. [Crossref]  [PubMed]  [PMC]
  29. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M, et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut. 2019;68(5):829-43. [Crossref]  [PubMed]
  30. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586-97. [Crossref]  [PubMed]  [PMC]
  31. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinsons Dis. 2021;7(1):27. [Crossref]  [PubMed]  [PMC]
  32. Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487-95. [Crossref]  [PubMed]
  33. Miyauchi E, Kim SW, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585(7823):102-6. [Crossref]  [PubMed]
  34. Zhu W, Romano KA, Li L, Buffa JA, Sangwan N, Prakash P, et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe. 2021;29(7):1199-208.e5. [Crossref]  [PubMed]  [PMC]
  35. Paul P, Kaul R, Abdellatif B, Arabi M, Upadyay R, Saliba R, et al. the promising role of microbiome therapy on biomarkers of ınflammation and oxidative stress in type 2 diabetes: A systematic and narrative review. Front Nutr. 2022;9:906243. [Crossref]  [PubMed]  [PMC]
  36. Kazemi A, Soltani S, Ghorabi S, Keshtkar A, Daneshzad E, Nasri F, et al. Effect of probiotic and synbiotic supplementation on inflammatory markers in health and disease status: A systematic review and meta-analysis of clinical trials. Clin Nutr. 2020;39(3):789-819. [Crossref]  [PubMed]
  37. Zamani B, Sheikhi A, Namazi N, Larijani B, Azadbakht L. The effects of supplementation with probiotic on biomarkers of oxidative stress in adult subjects: a systematic review and meta-analysis of randomized trials. Probiotics Antimicrob Proteins. 2020;12(1):102-11. [Crossref]  [PubMed]