Inflammation in Rheumatoid Arthritis

Haluk CİNAKLIa , Servet AKARb
aKırklareli Training and Research Hospital, Clinic of Rheumatology, Kırklareli, Türkiye
bİzmir Katip Çelebi University Faculty of Medicine, Atatürk Training and Research Hospital, Department of Internal Medicine, Division of Rheumatology, İzmir, Türkiye

Cinaklı H, Akar S. Inflammation in rheumatoid arthritis. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.139-45.

Article Language: EN

ABSTRACT
Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic and autoimmune disease. RA usually affects peripheral small joints symmetrically. It affects approximately 1% of population, and generally women are two to three times more likely to develop RA than men. Although its etiology is not clear, it results from interaction between genes and enviroment, which leads to breakdown of immune system, synovial inflammation, progressive cartilage and bone destruction. In preclinical RA period, RA associated antibodies such as rheumatoid factors (RFs), anti-citrullinated protein antibodies (ACPAs) and multiple inflammatory cytokines can be increased in the peripheral blood before the clinical arthritis. There are major genetic associations with the human leukocyte antigen (HLA) locus, for example several alleles of HLA-DRB1 are releated with high risk for antibody positive RA. In addition, epigenetic modification such as DNA methylation, histone modification affect the characteristic and function of the genes. On the other hand, application of cellular profiling techniques including singlecell transcriptomic and spatial transcriptomics has revealed new pathogenic cell types in RA synovial tissues. Finally, we discussed advances in genetics, epigenetics and novel biomarkers in the pathogenesis of RA.

Keywords: Rheumatoid arthritis; inflammation; epigenetic

Referanslar

  1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. [Crossref]  [PubMed]
  2. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012;71(9):1524-9. [Crossref]  [PubMed]
  3. Xue AL, Wu SY, Jiang L, Feng AM, Guo HF, Zhao P. Bone fracture risk in patients with rheumatoid arthritis: A meta-analysis. Medicine (Baltimore). 2017;96(36):e6983. [Crossref]  [PubMed]  [PMC]
  4. Simon TA, Thompson A, Gandhi KK, Hochberg MC, Suissa S. Incidence of malignancy in adult patients with rheumatoid arthritis: a meta-analysis. Arthritis Res Ther. 2015;17(1):212. Erratum in: Arthritis Res Ther. 2016;18(1):100. [Crossref]  [PubMed]  [PMC]
  5. Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001;358(9285):903-11. [Crossref]  [PubMed]
  6. Fleming A, Crown JM, Corbett M. Early rheumatoid disease. I. Onset. Ann Rheum Dis. 1976;35(4):357-60. [Crossref]  [PubMed]  [PMC]
  7. Jacoby RK, Jayson MI, Cosh JA. Onset, early stages, and prognosis of rheumatoid arthritis: a clinical study of 100 patients with 11-year follow-up. Br Med J. 1973;2(5858):96-100. [Crossref]  [PubMed]  [PMC]
  8. Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum. 2010;62(6):1576-82. [Crossref]  [PubMed]  [PMC]
  9. Hunter TM, Boytsov NN, Zhang X, Schroeder K, Michaud K, Araujo AB. Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004-2014. Rheumatol Int. 2017;37(9):1551-7. [Crossref]  [PubMed]
  10. Eriksson JK, Neovius M, Ernestam S, Lindblad S, Simard JF, Askling J. Incidence of rheumatoid arthritis in Sweden: a nationwide population-based assessment of incidence, its determinants, and treatment penetration. Arthritis Care Res (Hoboken). 2013;65(6):870-8. [Crossref]  [PubMed]
  11. Del Puente A, Knowler WC, Pettitt DJ, Bennett PH. High incidence and prevalence of rheumatoid arthritis in Pima Indians. Am J Epidemiol. 1989;129(6):1170-8. [Crossref]  [PubMed]
  12. Horwood NJ. Macrophage Polarization and Bone Formation: A review. Clin Rev Allergy Immunol. 2016;51(1):79-86. [Crossref]  [PubMed]
  13. Gay S, Koopman WJ. Immunopathology of rheumatoid arthritis. Curr Opin Rheumatol. 1989;1(1):8-14. [Crossref]  [PubMed]
  14. Aggarwal R, Liao K, Nair R, Ringold S, Costenbader KH. Anti-citrullinated peptide antibody assays and their role in the diagnosis of rheumatoid arthritis. Arthritis Rheum. 2009;61(11):1472-83. [Crossref]  [PubMed]  [PMC]
  15. Deighton CM, Walker DJ, Griffiths ID, Roberts DF. The contribution of HLA to rheumatoid arthritis. Clin Genet. 1989;36(3):178-82. [Crossref]  [PubMed]
  16. Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z, et al. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front Immunol. 2022;13:859400. [Crossref]  [PubMed]  [PMC]
  17. Demoruelle MK, Deane KD, Holers VM. When and where does inflammation begin in rheumatoid arthritis? Curr Opin Rheumatol. 2014;26(1):64-71. [Crossref]  [PubMed]  [PMC]
  18. Gan RW, Demoruelle MK, Deane KD, Weisman MH, Buckner JH, Gregersen PK, et al. Omega-3 fatty acids are associated with a lower prevalence of autoantibodies in shared epitope-positive subjects at risk for rheumatoid arthritis. Ann Rheum Dis. 2017;76(1):147-52. [Crossref]  [PubMed]  [PMC]
  19. Shi J, van de Stadt LA, Levarht EW, Huizinga TW, Hamann D, van Schaardenburg D, et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann Rheum Dis. 2014;73(4):780-3. [Crossref]  [PubMed]
  20. Hughes-Austin JM, Deane KD, Derber LA, Kolfenbach JR, Zerbe GO, Sokolove J, et al. Multiple cytokines and chemokines are associated with rheumatoid arthritis-related autoimmunity in first-degree relatives without rheumatoid arthritis: Studies of the Aetiology of Rheumatoid Arthritis (SERA). Ann Rheum Dis. 2013;72(6):901-7. [Crossref]  [PubMed]  [PMC]
  21. Makrygiannakis D, Hermansson M, Ulfgren AK, Nicholas AP, Zendman AJ, Eklund A, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis. 2008;67(10):1488-92. [Crossref]  [PubMed]
  22. Holers VM. Autoimmunity to citrullinated proteins and the initiation of rheumatoid arthritis. Curr Opin Immunol. 2013;25(6):728-35. [Crossref]  [PubMed]  [PMC]
  23. Muller S, Radic M. Citrullinated Autoantigens: From Diagnostic Markers to Pathogenetic Mechanisms. Clin Rev Allergy Immunol. 2015;49(2):232-9. [Crossref]  [PubMed]
  24. Arend WP, Firestein GS. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat Rev Rheumatol. 2012;8(10):573-86. [Crossref]  [PubMed]
  25. Padyukov L. Genetics of rheumatoid arthritis. Semin Immunopathol. 2022;44(1):47-62. [Crossref]  [PubMed]  [PMC]
  26. de Vries N, Tijssen H, van Riel PL, van de Putte LB. Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67-74 of the HLA-DRB1 molecule. Arthritis Rheum. 2002;46(4):921-8. [Crossref]  [PubMed]
  27. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34(4):395-402. [Crossref]  [PubMed]
  28. Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75(2):330-7. [Crossref]  [PubMed]  [PMC]
  29. Viatte S, Massey J, Bowes J, Duffus K; arcOGEN Consortium; Eyre S, Barton A, Worthington J. Replication of Associations of Genetic Loci Outside the HLA Region With Susceptibility to Anti-Cyclic Citrullinated Peptide-Negative Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68(7):1603-13. [Crossref]  [PubMed]  [PMC]
  30. Viatte S, Lee JC, Fu B, Espéli M, Lunt M, De Wolf JN, et al. Association Between Genetic Variation in FOXO3 and Reductions in Inflammation and Disease Activity in Inflammatory Polyarthritis. Arthritis Rheumatol. 2016;68(11):2629-36. [Crossref]  [PubMed]  [PMC]
  31. Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004;50(10):3085-92. [Crossref]  [PubMed]
  32. Padyukov L. Between the lines of genetic code: genetic interactions in understanding disease and complex phenotypes, vol. xxi. Amsterdam: Academic Press; 2014. p.203.
  33. Keenan BT, Chibnik LB, Cui J, Ding B, Padyukov L, Kallberg H, et al. Effect of interactions of glutathione S-transferase T1, M1, and P1 and HMOX1 gene promoter polymorphisms with heavy smoking on the risk of rheumatoid arthritis. Arthritis Rheum. 2010;62(11):3196-210. [Crossref]  [PubMed]  [PMC]
  34. Ha E, Bae SC, Kim K. Large-scale meta-analysis across East Asian and European populations updated genetic architecture and variant-driven biology of rheumatoid arthritis, identifying 11 novel susceptibility loci. Ann Rheum Dis. 2021;80(5):558-65. [Crossref]  [PubMed]  [PMC]
  35. Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet. 2020;52(7):669-679. [Crossref]  [PubMed]  [PMC]
  36. Kwon YC, Lim J, Bang SY, Ha E, Hwang MY, Yoon K, et al. Genome-wide association study in a Korean population identifies six novel susceptibility loci for rheumatoid arthritis. Ann Rheum Dis. 2020;79(11):1438-45. [Crossref]  [PubMed]  [PMC]
  37. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al; RACI consortium; GARNET consortium; Eyre S, Bowes J, Barton A, de Vries N, Moreland LW, Criswell LA, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81. [Crossref]  [PubMed]  [PMC]
  38. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005;5(6):472-84. [Crossref]  [PubMed]
  39. Kim K, Bang SY, Lee HS, Bae SC. Update on the genetic architecture of rheumatoid arthritis. Nat Rev Rheumatol. 2017;13(1):13-24. [Crossref]  [PubMed]
  40. Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol. 2017;8:2483. [Crossref]  [PubMed]  [PMC]
  41. Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, et al. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A. 2020;117(38):23261-9. [Crossref]  [PubMed]  [PMC]
  42. Zhu H, Wu LF, Mo XB, Lu X, Tang H, Zhu XW, et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann Rheum Dis. 2019;78(1):36-42. [Crossref]  [PubMed]
  43. Li XF, Wu S, Yan Q, Wu YY, Chen H, Yin SQ, et al. PTEN Methylation Promotes Inflammation and Activation of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. Front Pharmacol. 2021;12:700373. [Crossref]  [PubMed]  [PMC]
  44. Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci. 2018;19(4):1166. [Crossref]  [PubMed]  [PMC]
  45. Göschl L, Preglej T, Boucheron N, Saferding V, Müller L, Platzer A, et al. Histone deacetylase 1 (HDAC1): A key player of T cell-mediated arthritis. J Autoimmun. 2020;108:102379. [Crossref]  [PubMed]
  46. Li Y, Zhou M, Lv X, Song L, Zhang D, He Y, et al. Reduced Activity of HDAC3 and Increased Acetylation of Histones H3 in Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. J Immunol Res. 2018;2018:7313515. [Crossref]  [PubMed]  [PMC]
  47. Luo XB, Xi JC, Liu Z, Long Y, Li LT, Luo ZP, et al. Proinflammatory Effects of Ubiquitin-Specific Protease 5 (USP5) in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Mediators Inflamm. 2020;2020:8295149. [Crossref]  [PubMed]  [PMC]
  48. Kolarz B, Podgorska D, Podgorski R. Insights of rheumatoid arthritis biomarkers. Biomarkers. 2021;26(3):185-95. [Crossref]  [PubMed]
  49. Bhamidipati K, Wei K. Precision medicine in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2022;36(1):101742. [Crossref]  [PubMed]  [PMC]
  50. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al.; Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium; Boyce BF, DiCarlo E, Gravallese EM, Gregersen PK, Moreland L, Firestein GS, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019;20(7):928-42. [Crossref]  [PubMed]  [PMC]
  51. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med. 2004;350(25):2572-81. [Crossref]  [PubMed]
  52. Rao DA, Gurish MF, Marshall JL, Slowikowski K, Fonseka CY, Liu Y, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542(7639):110-4. [Crossref]  [PubMed]  [PMC]
  53. Kuo D, Ding J, Cohn IS, Zhang F, Wei K, Rao DA, et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci Transl Med. 2019;11(491):eaau8587. [Crossref]  [PubMed]  [PMC]
  54. Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med. 2020;26(8):1295-306. [Crossref]  [PubMed]
  55. Mizoguchi F, Slowikowski K, Wei K, Marshall JL, Rao DA, Chang SK, et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun. 2018;9(1):789. [Crossref]  [PubMed]  [PMC]
  56. Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. [Crossref]  [PubMed]  [PMC]
  57. Tas SW, Maracle CX, Balogh E, Szekanecz Z. Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol. 2016;12(2):111-22. [Crossref]  [PubMed]
  58. Wei K, Korsunsky I, Marshall JL, Gao A, Watts GFM, Major T, et al.; Accelerating Medicines Partnership Rheumatoid Arthritis & Systemic Lupus Erythematosus (AMP RA/SLE) Consortium; Siebel CW, Buckley CD, Raychaudhuri S, Brenner MB. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature. 2020;582(7811):259-64. [Crossref]  [PubMed]  [PMC]
  59. van Boekel MA, Vossenaar ER, van den Hoogen FH, van Venrooij WJ. Autoantibody systems in rheumatoid arthritis: specificity, sensitivity and diagnostic value. Arthritis Res. 2002;4(2):87-93. [Crossref]  [PubMed]  [PMC]
  60. Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, Lang AB, et al. Role of repetitive antigen patterns for induction of antibodies against antibodies. J Exp Med. 1997;185(10):1785-92. [Crossref]  [PubMed]  [PMC]
  61. Aletaha D, Alasti F, Smolen JS. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17(1):229. [Crossref]  [PubMed]  [PMC]
  62. Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. [Crossref]  [PubMed]  [PMC]
  63. Koziel J, Mydel P, Potempa J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr Rheumatol Rep. 2014;16(3):408. [Crossref]  [PubMed]  [PMC]
  64. Konig MF, Abusleme L, Reinholdt J, Palmer RJ, Teles RP, Sampson K, et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med. 2016;8(369):369ra176. [Crossref]
  65. Carubbi F, Alunno A, Gerli R, Giacomelli R. Post-Translational Modifications of Proteins: Novel Insights in the Autoimmune Response in Rheumatoid Arthritis. Cells. 2019;8(7):657. [Crossref]  [PubMed]  [PMC]
  66. Goëb V, Jouen F, Gilbert D, Le Loët X, Tron F, Vittecoq O. Diagnostic and prognostic usefulness of antibodies to citrullinated peptides. Joint Bone Spine. 2009;76(4):343-9. [Crossref]  [PubMed]
  67. Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG. Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med. 2013;57:79-91. [Crossref]  [PubMed]
  68. Hafkenscheid L, de Moel E, Smolik I, Tanner S, Meng X, Jansen BC, et al. N-Linked Glycans in the Variable Domain of IgG Anti-Citrullinated Protein Antibodies Predict the Development of Rheumatoid Arthritis. Arthritis Rheumatol. 2019;71(10):1626-33. [Crossref]  [PubMed]  [PMC]
  69. Jiang X, Trouw LA, van Wesemael TJ, Shi J, Bengtsson C, Källberg H, et al. Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Ann Rheum Dis. 2014;73(10):1761-8. [Crossref]  [PubMed]
  70. Challener GJ, Jones JD, Pelzek AJ, Hamilton BJ, Boire G, de Brum-Fernandes AJ, et al. Anti-carbamylated Protein Antibody Levels Correlate with Anti-Sa (Citrullinated Vimentin) Antibody Levels in Rheumatoid Arthritis. J Rheumatol. 2016;43(2):273-81. [Crossref]  [PubMed]  [PMC]