İnhalasyon Yaralanması ve Yönetimi

Uzm. Dr. Vildan Selin Çayhan1
Doç. Dr. Merve Akın2

1Ankara Bilkent Şehir Hastanesi, Çocuk Hastanesi, Çocuk Cerrahisi Kliniği, Çocuk Yanık Merkezi, Ankara, Türkiye
2Ankara Bilkent Şehir Hastanesi, Genel Hastane, Genel Cerrahi Kliniği, Erişkin Yanık Merkezi, Ankara, Türkiye

ÖZET

İnhalasyon yaralanmaları, duman, toksik gazlar ve partiküllerin solunması sonucu oluşan termal veya kimyasal hasarlardır. Bu tür yaralanmalar, yanıklara eşlik edebilir veya tek başına görülebilir. Hastalarda yüksek morbidite ve mortalite oranlarıyla ilişkilidir. Özellikle inhalasyon yaralanmalarına bağlı olarak pnömoni gelişmesi durumunda, mortalite oranı %60’a kadar çıkabilmektedir. Solunum yetmezliği, yanık merkezlerindeki en yaygın ölüm nedenidir ve bu durum inhalasyon hasarıyla doğrudan bağlantılı olabilir. Bu yazıda özellikle inhalasyon yaralanması ve toksiz gaz inhalasyonlarının patofizyolojisi, tanısı ve tedavi seçenekleri anlatılmaktadır.

Anahtar Kelimeler: Duman inhalasyon hasarı; Yanıklar; İnhalasyon

Referanslar

  1. Kabalak AA, Yasti AC. Management of inhalation injury and respiratory complications in Burns Intensive Care Unit. Ulus Travma Acil Cerrahi Derg 2012; 18(4): 333-8. [Crossref]  [PubMed]
  2. Herndon DN. Total burn care. Fifth edition. ed. Edinburgh: Elsevier; 2018. [Link]
  3. Sheridan RL. Fire-Related Inhalation Injury. N Engl J Med 2016 375(19): 1905. [Crossref]  [PubMed]
  4. Dries DJ, Endorf FW. Inhalation injury: epidemiology, pa- thology, treatment strategies. Scand J Trauma Resusc Emerg Med 2013; 21: 31. [Crossref]  [PubMed]  [PMC]
  5. Foncerrada G, Culnan DM, Capek KD, et al. Inhalation Inju- ry in the Burned Patient. Ann Plast Surg 2018; 80 (3 Suppl 2): S98-S105. [Crossref]  [PubMed]  [PMC]
  6. Smith DL, Cairns BA, Ramadan F, et al. Effect of inhalation injury, burn size, and age on mortality: a study of 1447 con- secutive burn patients. J Trauma 1994; 37(4): 655-9. [Crossref]  [PubMed]
  7. Tan Chor Lip H, Tan JH, Thomas M, Imran FH, Azmah Tuan Mat TN. Survival analysis and mortality predictors of hos- pitalized severe burn victims in a Malaysian burns intensive care unit. Burns Trauma 2019; 7: 3. [Crossref]  [PubMed]  [PMC]
  8. Suzuki M, Aikawa N, Kobayashi K, Higuchi R. Prognos- tic implications of inhalation injury in burn patients in To- kyo. Burns 2005; 31(3): 331-6. [Crossref]  [PubMed]
  9. Colohan SM. Predicting prognosis in thermal burns with as- sociated inhalational injury: a systematic review of prognos- tic factors in adult burn victims. J Burn Care Res 2010; 31(4): 529-39. [Crossref]  [PubMed]
  10. Shirani KZ, Pruitt BA, Jr., Mason AD, Jr. The influence of inhalation injury and pneumonia on burn mortality. Ann Surg 1987; 205(1): 82-7. [Crossref]  [PubMed]  [PMC]
  11. Demling RH. Smoke inhalation lung injury: an update. Eplas- ty 2008; 8: e27. [PubMed]
  12. Monteiro D, Silva I, Egipto P, et al. Inhalation injury in a burn unit: a retrospective review of prognostic factors. Ann Burns Fire Disasters 2017; 30(2): 121-5. [PubMed]
  13. Woodson LC. Diagnosis and grading of inhalation injury. J Burn Care Res 2009; 30(1): 143-5. [Crossref]  [PubMed]
  14. Rong YH, Liu W, Wang C, Ning FG, Zhang GA. Tempera- ture distribution in the upper airway after inhalation inju- ry. Burns 2011; 37(7): 1187-91. [Crossref]  [PubMed]
  15. Rehberg S, Maybauer MO, Enkhbaatar P, Maybauer DM, Yamamoto Y, Traber DL. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med 2009; 3(3): 283-97. [Crossref]  [PubMed]  [PMC]
  16. Enkhbaatar P, Pruitt BA, Jr., Suman O, et al. Pathophysiolo- gy, research challenges, and clinical management of smoke inhalation injury. Lancet 2016; 388(10052): 1437-46. [Crossref]  [PubMed]
  17. Miller K, Chang A. Acute inhalation injury. Emerg Med Clin North Am 2003; 21(2): 533-57. [Crossref]  [PubMed]
  18. Friedl HP, Till GO, Trentz O, Ward PA. Roles of histamine, complement and xanthine oxidase in thermal injury of skin. Am J Pathol 1989; 135(1): 203-17. [PubMed]
  19. Maybauer MO, Maybauer DM, Herndon DN, Traber DL. The role of superoxide dismutase in systemic inflamma- tion. Shock 2006; 25(2): 206-7. [Crossref]
  20. Perez Fontan JJ. On lung nerves and neurogen- ic injury. Ann Med 2002; 34(4): 226-40. [Crossref]  [PubMed]
  21. Sousse LE, Herndon DN, Andersen CR, et al. High tidal vol- ume decreases adult respiratory distress syndrome, atelecta- sis, and ventilator days compared with low tidal volume in pediatric burned patients with inhalation injury. J Am Coll Surg 2015; 220(4): 570-8. [Crossref]  [PubMed]  [PMC]
  22. Sheridan RL. Recognition and management of hot liquid aspiration in children. Ann Emerg Med 1996; 27(1): 89-91. [Crossref]  [PubMed]
  23. Rosen D, Avishai-Eliner S, Borenstein A, Leviav A, Tabach- nik E. Life-threatening laryngeal burns in toddlers following hot liquid aspiration. Acta Paediatr 2000; 89(8): 1018-20. [Crossref]  [PubMed]
  24. Hassan Z, Wong JK, Bush J, Bayat A, Dunn KW. Assess- ing the severity of inhalation injuries in adults. Burns 2010; 36(2): 212-6. [Crossref]  [PubMed]
  25. Albright JM, Davis CS, Bird MD, et al. The acute pulmonary inflammatory response to the graded severity of smoke in- halation injury. Crit Care Med 2012; 40(4): 1113-21. [Crossref]  [PubMed]  [PMC]
  26. Lange M, Hamahata A, Traber DL, et al. Preclinical eval- uation of epinephrine nebulization to reduce airway hyper- emia and improve oxygenation after smoke inhalation injury. Crit Care Med 2011; 39(4): 718-24. [Crossref]  [PubMed]  [PMC]
  27. Tuncer HB, Akin M, Cakirca M, Erkilic E, Yildiz HF, Yas- ti AC. Do pre-burn center management algorithms work? Evaluation of pre-admission diagnosis and treatment ade-quacy of burn patients referred to a burn center. J Burn Care Res 2024; 45(1): 180-9. [Crossref]  [PubMed]
  28. Badulak JH, Schurr M, Sauaia A, Ivashchenko A, Peltz E. Defining the criteria for intubation of the patient with thermal burns. Burns 2018; 44(3): 531-8. [Crossref]  [PubMed]
  29. Mlcak RP, Suman OE, Herndon DN. Respiratory manage- ment of inhalation injury. Burns 2007; 33(1): 2-13. [Crossref]  [PubMed]
  30. McCall JE, Cahill TJ. Respiratory care of the burn patient. J Burn Care Rehabil 2005; 26(3): 200-6. [PubMed]
  31. Palmieri TL, Enkhbaatar P, Bayliss R, et al. Continuous nebulized albuterol attenuates acute lung injury in an ovine model of combined burn and smoke inhalation. Crit Care Med 2006; 34(6): 1719-24. [Crossref]
  32. Jonkam C, Zhu Y, Jacob S, et al. Muscarinic receptor an- tagonist therapy improves acute pulmonary dysfunction af- ter smoke inhalation injury in sheep. Crit Care Med 2010; 38(12): 2339-44. [Crossref]  [PubMed]
  33. Walker PF, Buehner MF, Wood LA, et al. Diagnosis and management of inhalation injury: an updated review. Crit Care 2015; 19: 351. [Crossref]  [PubMed]  [PMC]
  34. Villegas L, Stidham T, Nozik-Grayck E. Oxidative Stress and Therapeutic Development in Lung Diseases. J Pulm Respir Med 2014; 4(4). [Crossref]  [PubMed]  [PMC]
  35. Elsharnouby NM, Eid HE, Abou Elezz NF, Aboelatta YA. Heparin/N-acetylcysteine: an adjuvant in the manage- ment of burn inhalation injury: a study of different doses. J Crit Care 2014; 29(1): 182 e1-4. [Crossref]  [PubMed]
  36. Enkhbaatar P, Esechie A, Wang J, et al. Combined antico- agulants ameliorate acute lung injury in sheep after burn and smoke inhalation. Clin Sci (Lond) 2008; 114(4): 321-9. [Crossref]  [PubMed]
  37. Desai MH, Mlcak R, Richardson J, Nichols R, Herndon DN. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/N-acetylcystine [correction of acetylcystine] therapy. J Burn Care Rehabil 1998; 19(3): 210-2. [Crossref]  [PubMed]
  38. Glas GJ, Serpa Neto A, Horn J, et al. Nebulized heparin for patients under mechanical ventilation: an individual pa- tient data meta-analysis. Ann Intensive Care 2016; 6(1): 33. [Crossref]  [PubMed]  [PMC]
  39. Kashefi NS, Nathan JI, Dissanaike S. Does a Nebulized Hep- arin/N-acetylcysteine Protocol Improve Outcomes in Adult Smoke Inhalation? Plast Reconstr Surg Glob Open 2014; 2(6): e165. [Crossref]  [PubMed]  [PMC]
  40. McIntire AM, Harris SA, Whitten JA, et al. Outcomes Fol- lowing the Use of Nebulized Heparin for Inhalation Injury (HIHI Study). J Burn Care Res 2017; 38(1): 45-52. [Crossref]  [PubMed]
  41. Ak AK, Cascella M. Post-Intubation Laryngeal Edema. Stat- Pearls. Treasure Island (FL); 2024. [PubMed]
  42. Thompson JT, Molnar JA, Hines MH, Chang MC, Pran- ikoff T. Successful management of adult smoke inhalation with extracorporeal membrane oxygenation. J Burn Care Rehabil 2005; 26(1): 62-6. [Crossref]
  43. Hale DF, Cannon JW, Batchinsky AI, et al. Prone position- ing improves oxygenation in adult burn patients with se- vere acute respiratory distress syndrome. J Trauma Acute Care Surg 2012; 72(6): 1634-9. [Crossref]  [PubMed]
  44. Miller AC, Ferrada PA, Kadri SS, Nataraj-Bhandari K, Vahedian-Azimi A, Quraishi SA. High-Frequency Venti- lation Modalities as Salvage Therapy for Smoke Inhala- tion-Associated Acute Lung Injury: A Systematic Review. J Intensive Care Med 2018; 33(6): 335-45. [Crossref]  [PubMed]
  45. Lucangelo U, Fontanesi L, Antonaglia V, et al. High fre- quency percussive ventilation (HFPV). Principles and tech- nique. Minerva Anestesiol 2003; 69(11): 841-8, 8-51. [PubMed]
  46. Reper P, Wibaux O, Van Laeke P, Vandeenen D, Duinslae- ger L, Vanderkelen A. High frequency percussive ventila- tion and conventional ventilation after smoke inhalation: a randomised study. Burns 2002; 28(5): 503-8. [Crossref]  [PubMed]
  47. Cortiella J, Mlcak R, Herndon D. High frequency percus- sive ventilation in pediatric patients with inhalation inju- ry. J Burn Care Rehabil 1999; 20(3): 232-5. [Crossref]  [PubMed]
  48. Dai NT, Chen TM, Cheng TY, et al. The comparison of ear- ly fluid therapy in extensive flame burns between inhalation and noninhalation injuries. Burns 1998; 24(7): 671-5. [Crossref]  [PubMed]
  49. Tanaka H, Wada T, Simazaki S, Hanumadass M, Reyes HM, Matsuda T. Effects of cimetidine on fluid requirement during resuscitation of third-degree burns. J Burn Care Re- habil 1991; 12(5): 425-9. [Crossref]  [PubMed]
  50. Matsuda T, Tanaka H, Williams S, Hanumadass M, Ab- carian H, Reyes H. Reduced fluid volume requirement for resuscitation of third-degree burns with high-dose vitamin C. J Burn Care Rehabil 1991; 12(6): 525-32. [Crossref]  [PubMed]
  51. Luo G, Peng Y, Yuan Z, et al. Inhalation injury in southwest China--the evolution of care. Burns 2010; 36(4): 506-10. [Crossref]  [PubMed]
  52. Demir S, Erturk A, Gunal YD, et al. Contribution of Bone Marrow-Derived Mesenchymal Stem Cells to Healing of Pulmonary Contusion-Created Rats. J Surg Res 2021; 261: 205-14. [Crossref]  [PubMed]
  53. Reagan MR, Kaplan DL. Concise review: Mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 2011; 29(6): 920-7. [Crossref]  [PubMed]  [PMC]
  54. Matthay MA, Thompson BT, Read EJ, et al. Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest 2010; 138(4): 965-72. [Crossref]  [PubMed]  [PMC]
  55. Cui P, Xin H, Yao Y, et al. Human amnion-derived mesen- chymal stem cells alleviate lung injury induced by white smoke inhalation in rats. Stem Cell Res Ther 2018; 9(1): 101. [Crossref]  [PubMed]  [PMC]
  56. Ihara K, Fukuda S, Enkhtaivan B, et al. Adipose-derived stem cells attenuate pulmonary microvascular hyperper- meability after smoke inhalation. PLoS One 2017; 12(10): e0185937. [Crossref]  [PubMed]  [PMC]
  57. Song M, Lv Q, Zhang X, et al. Dynamic Tracking Human Mesenchymal Stem Cells Tropism following Smoke Inhala- tion Injury in NOD/SCID Mice. Stem Cells Int 2016; 2016: 1691856. [Crossref]  [PubMed]  [PMC]
  58. Chen W, Zhu F, Guo GH, Zhan JH. [Effect of bone marrow mesenchymal stem cells engraftment on secretion of inflam- matory cytokine in the early stages of smoke inhalation inju- ry in rabbits]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2011; 23(1): 21-3. [PubMed]
  59. Zhu F, Guo GH, Chen W, Peng Y, Xing JJ, Wang NY. [Effect of bone marrow-derived mesenchymal stem cells transplan- tation on the inflammatory response and lung injury in rabbit with inhalation injury]. Zhonghua Shao Shang Za Zhi 2010; 26(5): 360-5. [PubMed]
  60. Fontan JJ, Cortright DN, Krause JE, et al. Substance P and neurokinin-1 receptor expression by intrinsic airway neurons in the rat. Am J Physiol Lung Cell Mol Physiol 2000; 278(2): L344-55. [Crossref]  [PubMed]
  61. Lange M, Enkhbaatar P, Traber DL, et al. Role of calcitonin gene-related peptide (CGRP) in ovine burn and smoke inha- lation injury. J Appl Physiol (1985) 2009; 107(1): 176-84. [Crossref]  [PubMed]  [PMC]
  62. Esechie A, Kiss L, Olah G, et al. Protective effect of hydro- gen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci (Lond) 2008; 115(3): 91-7. [Crossref]  [PubMed]
  63. Esechie A, Enkhbaatar P, Traber DL, et al. Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br J Pharmacol 2009; 158(6): 1442-53. [Crossref]  [PubMed]  [PMC]
  64. Han ZH, Jiang YI, Duan YY, Wang XY, Huang Y, Fang TZ. Protective effects of hydrogen sulfide inhalation on oxidative stress in rats with cotton smoke inhalation-induced lung injury. Exp Ther Med 2015; 10(1): 164-8. [Crossref]  [PubMed]  [PMC]
  65. Wood EJ. Marks' basic medical biochemistry: A clinical ap- proach (second edition). Biochem Mol Biol Educ 2006; 34(5):395. [Crossref]  [PubMed]
  66. Jiao XY, Gao E, Yuan Y, et al. INO-4885 [5,10,15,20-tetra[N-(benzyl-4'-carboxylate)-2-pyridini- um]-21H,23H-porphine iron(III) chloride], a peroxynitrite decomposition catalyst, protects the heart against reperfusion injury in mice. J Pharmacol Exp Ther 2009; 328(3): 777-84. [Crossref]  [PubMed]  [PMC]
  67. Hamahata A, Enkhbaatar P, Lange M, et al. Administration of a peroxynitrite decomposition catalyst into the bronchial artery attenuates pulmonary dysfunction after smoke inha- lation and burn injury in sheep. Shock 2012; 38(5): 543-8. [Crossref]  [PubMed]
  68. Ito H, Malgerud E, Asmussen S, Lopez E, Salzman AL, Enkhbaatar P. R-100 improves pulmonary function and systemic fluid balance in sheep with combined smoke-inha- lation injury and Pseudomonas aeruginosa sepsis. J Transl Med 2017; 15(1): 266. [Crossref]  [PubMed]  [PMC]
  69. Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005; 4(5): 421-40. [Crossref]  [PubMed]
  70. Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R, et al. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 2009; 47(1): 13-26. [Crossref]  [PubMed]
  71. Bartha E, Asmussen S, Olah G, et al. Burn and smoke injury activates poly(ADP-ribose)polymerase in circulating leu- kocytes. Shock 2011; 36(2): 144-8. [Crossref]  [PubMed]  [PMC]
  72. Avlan D, Taskinlar H, Unlu A, et al. The role of poly(ADP-ri- bose) synthetase inhibition on the intestinal mucosal barrier after thermal injury. Burns 2004; 30(8): 785-92. [Crossref]  [PubMed]
  73. Shimoda K, Murakami K, Enkhbaatar P, et al. Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep. Am J Physiol Lung Cell Mol Physiol 2003; 285(1): L240-9. [Crossref]  [PubMed]
  74. Nelson C, Lee J, Ko K, et al. Therapeutic Efficacy of Es- omeprazole in Cotton Smoke-Induced Lung Injury Mod- el. Front Pharmacol 2017; 8: 16. [Crossref]  [PubMed]  [PMC]
  75. Ding H, Lv Q, Wu S, et al. Intratracheal Instillation of Perflu- orohexane Modulates the Pulmonary Immune Microenviron- ment by Attenuating Early Inflammatory Factors in Patients With Smoke Inhalation Injury: A Randomized Controlled Clinical Trial. J Burn Care Res 2017; 38(4): 251-9. [Crossref]  [PubMed]
  76. Sun Y, Qiu X, Wu G, et al. The effects of porcine pulmo- nary surfactant on smoke inhalation injury. J Surg Res 2015; 198(1): 200-7. [Crossref]  [PubMed]
  77. Rose JJ, Wang L, Xu Q, et al. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Ther- apy. Am J Respir Crit Care Med 2017; 195(5): 596-606. [Crossref]  [PubMed]  [PMC]
  78. Nelson L. Acute cyanide toxicity: mechanisms and manifes- tations. J Emerg Nurs 2006; 32(4 Suppl): S8-11. [Crossref]  [PubMed]
  79. Suman SG, Gretarsdottir JM. Chemical and Clini- cal Aspects of Metal-Containing Antidotes for Poison- ing by Cyanide. Met Ions Life Sci 2019; 19. [Crossref]  [PubMed]
  80. Hall JE, Hall ME. Guyton and Hall textbook of medical phys- iology. 14th edition. ed. Philadelphia, PA: Elsevier; 2021. Chapter 41. [Link]
  81. Blumenthal I. Carbon monoxide poisoning. J R Soc Med 2001;94(6): 270-2. [Crossref]  [PubMed]  [PMC]
  82. Sips PY, Shi X, Musso G, et al. Identification of specific met- abolic pathways as druggable targets regulating the sensitivity to cyanide poisoning. PLoS One 2018; 13(6): e0193889. [Crossref]  [PubMed]  [PMC]
  83. Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol 2012; 13(10): 1940-8. [Crossref]  [PubMed]
  84. Datta PK, Roy Chowdhury S, Aravindan A, Saha S, Rapaka S. Medical and Surgical Care of Critical Burn Patients: A Comprehensive Review of Current Evidence and Practice. Cureus 2022; 14(11): e31550. [Crossref]
  85. Moore SJ, Norris JC, Walsh DA, Hume AS. Antidotal use of methemoglobin forming cyanide antagonists in concur- rent carbon monoxide/cyanide intoxication. J Pharmacol Exp Ther 1987; 242(1): 70-3. [PubMed]
  86. Pamidi PV, DeAbreu M, Kim D, Mansouri S. Hydroxocobal- amin and cyanocobalamin interference on co-oximetry based hemoglobin measurements. Clin Chim Acta 2009; 401(1-2): 63-7. [Crossref]  [PubMed]
  87. Meillier A, Heller C. Acute Cyanide Poisoning: Hydroxoco- balamin and Sodium Thiosulfate Treatments with Two Out- comes following One Exposure Event. Case Rep Med 2015; 2015: 217951. [Crossref]  [PubMed]  [PMC]