INHALATION ANESTHETICS
Evren Selma Evirgen
Ankara Bilkent City Hospital, Department of Anesthesiology and Reanimation, Ankara, Türkiye
Evirgen ES. Respiratory Phisiology. In: Kazancı D, editor. Anesthesiology Fast Review. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.101-111.
ABSTRACT
- Inhalational anesthetics are applied as a gas mixture component in order to reach sufficient anesthetic concentration in the central nervous system. After the lungs where absorption occurs, it requires the achievement of the agent-specific partial pressure in the target tissues, the brain and spinal cord.
- After Meyer-Overton’s lipid theory, the prevailing view today is that they act via protein receptors. They increase inhibitory postsynaptic activity and inhibit excitatory synaptic activity. They increase GABAA and glycine receptor function, while N2O and Xenon in the gaseous state act by inhibiting N-methyl-D-Aspartate (NMDA) channels.
- The most important factor in determining the rate of induction and recovery from anesthetic is the blood/gas partition coefficient. A high coefficient means that too much of the anesthetic is dissolved in the blood, and it will take a long time for the target tissue concentration to approach the alveolar concentration.
- Pharmacokinetic effects may vary with the solubility of the anesthetic agent, cardiac output, respiratory frequencies, tissue perfusion and age.
- All agents are cerebroprotective and cardioprotective. Anesthetic preconditioning is protective for myocardial and cerebral ischemia.
- Their use has been discontinued after immune-based hepatitis in halothane applications and nephrotoxicity in methoxyflurane applications.
- Compound A may occur in the interaction of sevoflurane with CO2 absorbant. Bone marrow depression and DNA damage have been observed with N2O. All except N2O and Xenon can cause malignant hyperthermia.
- In addition to their immunosuppressive effects, concerns about neurotoxicity in developing brains require long-term studies.
- Inhalational agents are potent greenhouse gases. Alternative anesthetic methods, effective ventilation and cleaning systems, and low fresh gas flow applications can reduce atmospheric emissions.
Keywords: Nitrous oxide; Desflurane; Sevoflurane; Isoflurane; Halothane; Environment; Climate change
×
Kaynak Göster
Referanslar
- Erving HW. The Discoverer of Anæsthesia: Dr. Horace Wells of Hartford. Yale J Biol Med. 1933;5(5):421-430. [PubMed]
- Demers Lavelle E, Kurra S. Pharmacology of Inhaled Anesthetics. In: Farag, E., Argalious, M., Tetzlaff, J.E., Sharma, D. (eds) Basic Sciences in Anesthesia. Springer, Cham. 2018. [Crossref]
- Neuman GG, Sidebotham G, Negoianu E, et al. Laparoscopy explosion hazards with nitrous oxide. Anesthesiology. 1993;78(5):875-879. [Crossref] [PubMed]
- Izumi Y, Hsu FF, Conway CR, Nagele P, Mennerick SJ, Zorumski CF. Nitrous Oxide, a Rapid Antidepressant, Has Ketamine-like Effects on Excitatory Transmission in the Adult Hippocampus. Biol Psychiatry. 2022;92(12):964-972. [Crossref] [PubMed] [PMC]
- Gmehling J, Onk en U, Schulte HW. Vapor-liquid equilibria for the binary systems diethyl ether-halothane (1, 1, 1-trifluoro-2-bromo-2-chloroethane), halothane-methanol and diethyl ether-methanol. J Chem Eng Data. 1980;25(1):29- 32. [Crossref]
- Joan Stachnik, Inhaled anesthetic agents, American Journal of Health-System Pharmacy. 2006; 63(7):623-634. [Crossref] [PubMed]
- Eger EI 2nd. Characteristics of anesthetic agents used for induction and maintenance of general anesthesia. Am J Health Syst Pharm. 2004;61 Suppl 4:S3-S10. [Crossref] [PubMed]
- Eger EI 2nd. Desflurane animal and human pharmacology: aspects of kinetics, safety, and MAC. Anesth Analg. 1992;75(4):S3-S9. [PubMed]
- Andrews JJ, Johnston RV Jr. The new Tec6 desflurane vaporizer. Anesth Analg. 1993;76(6):1338-1341. [Crossref] [PubMed]
- Jin Z, Piazza O, Ma D, Scarpati G, De Robertis E. Xenon anesthesia and beyond: pros and cons. Minerva Anestesiol. 2019;85(1):83-89. [Crossref] [PubMed]
- Cullen SC, Gross EG.The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 1951; 113:580-2. [Crossref] [PubMed]
- Orhan ME. Xenon in anesthesia: Past and present. Journal of Anesthesia 2008;16 (3):125 - 129. [Link]
- Jin Z, Piazza O, Ma D, Scarpati G, De Robertis E. Xenon anesthesia and beyond: pros and cons. Minerva Anestesiol. 2019;85(1):83-89. [Crossref]
- Melnyk V, Fedorko L, Djaiani G. Xenon Anesthesia: Is it in Due Course for a Mainstream Comeback?. J Cardiothorac Vasc Anesth. 2020;34(1):134-135. [Crossref] [PubMed]
- Gropper MA, Cohen NH, Eriksson LI, Fleisher LA, Leslie K, Wiener-Kronish JP, eds. Erdem AF, Sağır Ö, çeviri editörleri. Miller Anestezi Cilt 1: İnhalasyon Anestezikleri: Etki Mekanizmaları. 9. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2022. p 487-508. [Link]
- Eger EI. Anesthetic uptake and action. Baltimore,MD: The Williams and Wilkins Co.;1974 [Link]
- Jedlicka J, Groene P, Linhart J, Raith E, Mu Stapha DV, Conzen P. Inhalationsanästhetika [Inhalational anesthetics]. Anaesthesist. 2021;70(4):343-355. [Crossref] [PubMed]
- Eger EI 2nd, Gong D, Koblin DD, Bowland T, Ionescu P, Laster MG et al. The effect of anesthetic duration on kinetic and recovery characteristics of desflurane versus sevoflurane, and on the kinetic characteristics of compound A, in volunteers. Anesth Analg. 1998;86(2):414-421. [Crossref] [PubMed]
- Torri G, Damia G. Pulmonary clearence of anesthetic agents. A theoretical study. Br J Anaesth. 1968;40:757-766 [Crossref] [PubMed]
- Aranake A, Mashour GA, Avidan MS. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 2013;68(5):512-522. [Crossref] [PubMed]
- Torri G. Inhalation anesthetics: a review. Minerva Anestesiol. 2010;76(3):215-228. [PubMed]
- Khan KS, Hayes I, Buggy DJ. Pharmacology of anaesthetic agents II: inhalation anaesthetic agents. Continuing Education in Anaesthesia Critical Care & Pain. 2014;14 (3):106-111. [Crossref]
- Deile M, Damm M, Heller AR. Inhalative Anästhetika [Inhaled anesthetics]. Anaesthesist. 2013;62(6):493-504. [Crossref] [PubMed]
- Pagel PS, Crystal GJ. The Discovery of Myocardial Preconditioning Using Volatile Anesthetics: A History and Contemporary Clinical Perspective. J Cardiothorac Vasc Anesth. 2018;32(3):1112-1134. [Crossref] [PubMed]
- Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;348(21):2110-2124. [Crossref] [PubMed]
- Constant I, Seeman R, Murat I. Sevoflurane and epileptiform EEG changes. Paediatr Anaesth. 2005;15(4):266-274. [Crossref] [PubMed]
- Endo T, Sato K, Shamoto H, Yoshimoto T. Effects of sevoflurane on electrocorticography in patients with intractable temporal lobe epilepsy.J Neurosurg Anesthesiol. 2002;14(1):59-62. [Crossref] [PubMed]
- Mielck F, Stephan H, Buhre W, Weyland A, Sonntag H. Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans. Br J Anaesth. 1998;81(2):155-160. [Crossref] [PubMed]
- Ornstein E, Young WL, Fleischer LH, Ostapkovich N. Desflurane and isoflurane have similar effects on cerebral blood flow in patients with intracranial mass lesions. Anesthesiology. 1993;79(3):498-502. [Crossref] [PubMed]
- Artru AA, Lam AM, Johnson JO, Sperry RJ. Intracranial pressure, middle cerebral artery flow velocity, and plasma inorganic fluoride concentrations in neurosurgical patients receiving sevoflurane or isoflurane. Anesth Analg. 1997;85(3):587-592. [Crossref] [PubMed]
- Paul M, Fokt RM, Kindler CH, Dipp NC, Yost CS. Characterization of the interactions between volatile anesthetics and neuromuscular blockers at the muscle nicotinic acetylcholine receptor. Anesth Analg. 2002;95(2):. [Crossref] [PubMed]
- Burchardi H, Kaczmarczyk G. The effect of anaesthesia on renal function. Eur J Anaesthesiol. 1994;11(3):163-168. [PubMed]
- Fukazawa K, Lee HT. Volatile anesthetics and AKI: risks, mechanisms, and a potential therapeutic window. J Am Soc Nephrol. 2014;25(5):884-892. [Crossref] [PubMed] [PMC]
- Alanoğlu Z, Yıldırım Güçlü Ç, Bermede AO, Akış N. What is the difference between different sevoflurane products? How different are different sevoflurane products?. Journal of Anesthesia. 2012; 20(4), 189-195. [Link]
- Levy RJ. Anesthesia-Related Carbon Monoxide Exposure: Toxicity and Potential Therapy. Anesth Analg. 2016;123(3):670-681. [Crossref] [PubMed] [PMC]
- Keijzer C, Perez RS, De Lange JJ. Carbon monoxide production from five volatile anesthetics in dry sodalime in a patient model: halothane and sevoflurane do produce carbon monoxide; temperature is a poor predictor of carbon monoxide production. BMC Anesthesiol. 2005;5(1):6. [Crossref] [PubMed] [PMC]
- Kurth MJ, Yokoi T, Gershwin ME. Halothane-induced hepatitis: paradigm or paradox for drug-induced liver injury. Hepatology. 2014;60(5):1473-1475. [Crossref] [PubMed] [PMC]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. [PubMed]
- Ackerman RS, Luddy KA, Icard BE, Piñeiro Fernández J, Gatenby RA, Muncey AR. The Effects of Anesthetics and Perioperative Medications on Immune Function: A Narrative Review. Anesth Analg. 2021;133(3):676-689. [Crossref] [PubMed]
- Apfel CC, Kranke P, Katz MH, Goepfert C, Papenfuss T, Rauch S, et al. Volatile anaesthetics may be the main cause of early but not delayed postoperative vomiting: a randomized controlled trial of factorial design. Br J Anaesth. 2002;88(5):659-668. [Crossref] [PubMed]
- Hudson AE, Hemmings HC Jr. Are anaesthetics toxic to the brain?. Br J Anaesth. 2011;107(1):30-37. [Crossref] [PubMed] [PMC]
- Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876-882. [Crossref] [PubMed] [PMC]
- Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681-1707. [Crossref] [PubMed]
- Zou X, Liu F, Zhang X, Patterson TA, Callicot R, Liu S, et al. Inhalation anesthetic-induced neuronal damage in the developing rhesus monkey. Neurotoxicol Teratol. 2011;33(5):592-597. [Crossref] [PubMed]
- Mellon RD, Simone AF, Rappaport BA. Use of anesthetic agents in neonates and young children. Anesth Analg. 2007;104(3):509-520. [Crossref] [PubMed]
- Yılmaz S, Çalbayram NÇ. Exposure to anesthetic gases among operating room personnel and risk of genotoxicity: A systematic review of the human biomonitoring studies. J Clin Anesth. 2016;35:326-331. [Crossref] [PubMed]
- Chaoul MM, Braz JR, Lucio LM, Golim MA, Braz LG, Braz MG. Does occupational exposure to anesthetic gases lead to increase of pro-inflammatory cytokines?. Inflamm Res. 2015;64(12):939-942. [Crossref] [PubMed]
- Wrońska-Nofer T, Nofer JR, Jajte J, Dziubaltowska E, Szymczak W. Krajewski W, et al. Oxidative DNA damage and oxidative stress in subjects occupanally exposed to nitrous oxide (N(2)O). Mutat Res. 2012;731(1-2):58-63. [Crossref] [PubMed]
- Gaya da Costa M, Kalmar AF, Struys MMRF. Inhaled Anesthetics: Environmental Role, Occupational Risk, and Clinical Use. Journal of Clinical Medicine. 2021;10(6):1306. [Crossref] [PubMed] [PMC]
- İnan G, Şatırlar Z. Ö. 2023. Anestezinin Küresel Isınmaya Etkisi ve Sürdürülebilir Anestezi Gerçeği. Journal of Anesthesia/Anestezi Dergisi (JARSS). 2023;31(4). [Crossref]