Introduction and Classification of Inherited Metabolic Myopathies

cocukmetabolizma-5-1-2024

Ekin ÖZSAYDI AKTAŞOĞLUa , Leyla TÜMERb

aUniversity of Health Sciences Ankara Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Department of Pediatric Metabolism Diseases, Ankara, Türkiye
bGazi University Faculty of Medicine, Department of Pediatric Metabolism Diseases, Ankara, Türkiye

ABSTRACT
Metabolic myopathies are rare, inherited disorders with variable clinical presentations which include glycogen metabolism disorders, lipid metabolism disorders and mitochondrial myopathies. Muscle symptoms such as exercise intolerance, weakness, myalgia and rhabdomyolysis is detected in patients and multisystem involvement can be seen in some of the disorders. Routine laboratory tests, creatine kinase analysis and specific metabolic tests should be performed in suspected patients and the diagnosis should be confirmed by molecular genetic analysis. It should be taken into consideration that the laboratory results measured between attacks or during routine analysis may be completely normal.
Keywords: Muscular diseases; glycogen storage disease; carnitine palmitoyl transferase 2 deficiency; mitochondrial myopathies; rhabdomyolysis

Referanslar

  1. Lilleker JB, Keh YS, Roncaroli F, Sharma R, Roberts M. Metabolic myopathies: a practical approach. Pract Neurol. 2018;18(1):14-26. [Crossref]  [PubMed]
  2. Adler M, Shieh P. Metabolic Myopathies. Semin Neurol. 2015;35(04):385-97. [Crossref]  [PubMed]
  3. Darras BT, Friedman NR. Metabolic myopathies: a clinical approach; part I. Pediatr Neurol. 2000;22(2):87-97. [Crossref]  [PubMed]
  4. Tarnopolsky MA. What can metabolic myopathies teach us about exercise physiology? Appl Physiol Nutr Metab. 2006;31(1):21-30. [Crossref]  [PubMed]
  5. Tarnopolsky MA. Myopathies Related to Glycogen Metabolism Disorders. Neurotherapeutics. 2018;15(4):915-27. [Crossref]  [PubMed]  [PMC]
  6. Kohler L, Puertollano R, Raben N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics. 2018;15(4):928-42. [Crossref]  [PubMed]  [PMC]
  7. Slonim AE, Bulone L, Ritz S, Goldberg T, Chen A, Martiniuk F. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr. 2000;137(2):283-5. [Crossref]  [PubMed]
  8. Lebo RV, Anderson LA, DiMauro S, Lynch E, Hwang P, Fletterick R. Rare McArdle disease locus polymorphic site on 11q13 contains CpG sequence. Hum Genet. 1990;86(1):17-24. [Crossref]  [PubMed]
  9. Tarnopolsky MA. Metabolic Myopathies. Continuum (Minneap Minn). 2022;28(6):1752-77. [Crossref]  [PubMed]
  10. Llavero F, Arrazola Sastre A, Luque Montoro M, Gálvez P, Lacerda H, Parada L, et al. McArdle Disease: New Insights into Its Underlying Molecular Mechanisms. Int J Mol Sci. 2019;20(23):5919. [Crossref]  [PubMed]  [PMC]
  11. Quinlivan R, Buckley J, James M, Twist A, Ball S, Duno M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81(11):1182-8. [Crossref]  [PubMed]
  12. Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan PJ, et al. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Inherit Metab Dis. 2016;39(5):697-704. [Crossref]  [PubMed]  [PMC]
  13. Kishnani PS, Goldstein J, Austin SL, Arn P, Bachrach B, Bali DS, et al. Diagnosis and management of glycogen storage diseases type VI and IX: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2019;21(4):772-89. [Crossref]  [PubMed]
  14. Wilkinson DA, Tonin P, Shanske S, Lombes A, Carlson GM, DiMauro S. Clinical and biochemical features of 10 adult patients with muscle phosphorylase kinase deficiency. Neurology. 1994;44(3 Pt 1):461-6. [Crossref]  [PubMed]  [PMC]
  15. Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, et al. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab. 2023;138(3):107525. [Crossref]  [PubMed]
  16. Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep. 2010;10(2):118-26. [Crossref]  [PubMed]  [PMC]
  17. Urtizberea JA, Severa G, Malfatti E. Metabolic Myopathies in the Era of Next-Generation Sequencing. Genes (Basel). 2023;14(5):954. [Crossref]  [PubMed]  [PMC]
  18. Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68. [Crossref]  [PubMed]  [PMC]
  19. Laforêt P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, et al. Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009;19(5):324-9. [Crossref]  [PubMed]
  20. Cakmak E, Bagci G. Chanarin-Dorfman Syndrome: A comprehensive review. Liver Int. 2021;41(5):905-14. [Crossref]  [PubMed]
  21. Prasun P. Multiple Acyl-CoA Dehydrogenase Deficiency. 2020 Jun 18. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. [PubMed]
  22. de Barcelos IP, Emmanuele V, Hirano M. Advances in primary mitochondrial myopathies. Curr Opin Neurol. 2019;32(5):715-21. [Crossref]  [PubMed]  [PMC]
  23. Ahmed ST, Craven L, Russell OM, Turnbull DM, Vincent AE. Diagnosis and Treatment of Mitochondrial Myopathies. Neurotherapeutics. 2018;15(4):943-53. [Crossref]  [PubMed]  [PMC]
  24. Garone C, Taylor RW, Nascimento A, Poulton J, Fratter C, Domínguez-González C, et al. Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet. 2018;55(8):515-21. [Crossref]  [PubMed]  [PMC]
  25. Wang J, El-Hattab AW, Wong LJC. TK2-Related Mitochondrial DNA Maintenance Defect, Myopathic Form. 2012 Dec 6 [updated 2018 Jul 26]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023.
  26. Lu S, Lyu Z, Wang Z, Kou Y, Liu C, Li S, et al. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish. Theranostics. 2021;11(6):2788-805. [Crossref]  [PubMed]  [PMC]