Kinase Inhibitors in Pediatric Rheumatology

cocukromatolojisi-5-1-2024

Nimet ÖNERa , Banu ÇELİKEL ACARa

aUniversity of Health Sciences Ankara Bilkent City Hospital, Deparment of Pediatric Rheumatology, Ankara, Türkiye

ABSTRACT
Janus kinases (JAK) are protein tyrosine kinases involved in the regulation of many cytokines and hormones. Janus kinase-signal transducer and activator of transcription (JAK-STAT) regulates cell development, differentiation, proliferation, and apoptosis. It also has a significant role in immune regulation and inflammation. JAK inhibitors bind to JAK proteins and prevent the transphosphorylation of associated cytokine and growth factor receptors. Thus, the JAK-STAT signaling pathway cannot be activated. In pediatric rheumatology, tofacitinib, baricitinib, upodacitinib and ruxolitinib are most used in the treatment of juvenile idiopathic arthritis, juvenile dermatomyositis and interforenopathy. Their use in oral form and short half-life are major advantages. They are similar to conventional and biological disease modifying antirheumatic drugs in terms of side effects. Non-serious side effects such as upper respiratory tract infection, nasopharyngitis, nausea and headache may occur. In cases unresponsive to other treatments, favourable results can be achieved.
Keywords: Childhood; janus kinases inhibitors; pediatric rheumatology

Referanslar

  1. Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs. 2019;28(1):85-92. [Crossref]  [PubMed]
  2. Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P. JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev. 2019;18(11):102390. [Crossref]  [PubMed]
  3. Meyer DM, Jesson MI, Li X, Elrick MM, Funckes-Shippy CL, Warner JD, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010;7:41. [Crossref]  [PubMed]  [PMC]
  4. Tzeng HT, Chyuan IT, Lai JH. Targeting the JAK-STAT pathway in autoimmune diseases and cancers: A focus on molecular mechanisms and therapeutic potential. Biochem Pharmacol. 2021;193:114760. [Crossref]  [PubMed]
  5. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol. 2020;80:106210. [Crossref]  [PubMed]
  6. Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014;57(12):5023-38. [Crossref]  [PubMed]
  7. Ll Wilkinson MG, Deakin CT, Papadopoulou C, Eleftheriou D, Wedderburn LR. JAK inhibitors: a potential treatment for JDM in the context of the role of interferon-driven pathology. Pediatr Rheumatol Online J. 2021;19(1):146. [Crossref]  [PubMed]  [PMC]
  8. McInnes IB, Byers NL, Higgs RE, Lee J, Macias WL, Na S, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther. 2019;21(1):183. [Crossref]  [PubMed]  [PMC]
  9. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127-32. [Crossref]  [PubMed]  [PMC]
  10. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010;184(9):5298-307. [Crossref]  [PubMed]
  11. Parmentier JM, Voss J, Graff C, Schwartz A, Argiriadi M, Friedman M, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018;2:23. [Crossref]  [PubMed]  [PMC]
  12. Namour F, Anderson K, Nelson C, Tasset C. Filgotinib: A Clinical Pharmacology Review. Clin Pharmacokinet. 2022;61(6):819-32. [Crossref]  [PubMed]  [PMC]
  13. Takeuchi T, Tanaka Y, Tanaka S, Kawakami A, Iwasaki M, Katayama K, et al. Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III randomised, double-blind, placebo-controlled trial (RAJ4) in Japan. Ann Rheum Dis. 2019;78(10):1305-19. [Crossref]  [PubMed]  [PMC]
  14. Nakayamada S, Kubo S, Iwata S, Tanaka Y. Recent Progress in JAK Inhibitors for the Treatment of Rheumatoid Arthritis [published correction appears in BioDrugs. 2016 Oct;30(5):483]. BioDrugs. 2016;30(5):407-19. [Crossref]  [PubMed]
  15. Li HW, Zeng HS. Regulation of JAK/STAT signal pathway by miR-21 in the pathogenesis of juvenile idiopathic arthritis. World J Pediatr. 2020;16(5):502-13. Erratum in: World J Pediatr. 2021; 17(6):676-9. [Crossref]  [PubMed]  [PMC]
  16. Ruperto N, Brunner HI, Synoverska O, Ting TV, Mendoza CA, Spindler A, et al. Tofacitinib in juvenile idiopathic arthritis: a double-blind, placebo-controlled, withdrawal phase 3 randomised trial. Lancet. 2021;398(10315):1984-96. [Crossref]  [PubMed]
  17. Ramanan AV, Quartier P, Okamoto N, Foeldvari I, Spindler A, Fingerhutová Š, et al. Baricitinib in juvenile idiopathic arthritis: an international, phase 3, randomised, double-blind, placebo-controlled, withdrawal, efficacy, and safety trial [published correction appears in Lancet. 2023 Aug 12;402(10401):528]. Lancet. 2023;402(10401):555-70. [Crossref]  [PubMed]
  18. Gillard L, Pouchot J, Cohen-Aubart F, Koné-Paut I, Mouterde G, Michaud M, et al. JAK inhibitors in difficult-to-treat adult-onset Still's disease and systemic-onset juvenile idiopathic arthritis. Rheumatology (Oxford). 2023;62(4):1594-604. [Crossref]  [PubMed]
  19. Huang Z, Lee PY, Yao X, Zheng S, Li T. Tofacitinib Treatment of Refractory Systemic Juvenile Idiopathic Arthritis. Pediatrics. 2019;143(5):e20182845. [Crossref]  [PubMed]
  20. Paudyal A, Zheng M, Lyu L, Thapa C, Gong S, Yang Y, et al. JAK-inhibitors for dermatomyositis: A concise literature review. Dermatol Ther. 2021;34(3):e14939. [Crossref]  [PubMed]
  21. Sabbagh S, Almeida de Jesus A, Hwang S, Kuehn HS, Kim H, Jung L, et al. Treatment of anti-MDA5 autoantibody-positive juvenile dermatomyositis using tofacitinib. Brain. 2019;142(11):e59. [Crossref]  [PubMed]  [PMC]
  22. Sözeri B, Demir F. A striking treatment option for recalcitrant calcinosis in juvenile dermatomyositis: tofacitinib citrate. Rheumatology (Oxford). 2020;59(12):e140-e1. [Crossref]  [PubMed]
  23. Han VX, Mohammad SS, Jones HF, Bandodkar S, Crow YJ, Dale RC, et al. Cerebrospinal fluid neopterin as a biomarker of treatment response to Janus kinase inhibition in Aicardi-Goutières syndrome. Dev Med Child Neurol. 2022;64(2):266-71. [Crossref]  [PubMed]
  24. Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041-52. [Crossref]  [PubMed]  [PMC]
  25. Kim H, Brooks KM, Tang CC, Wakim P, Blake M, Brooks SR, et al. Pharmacokinetics, Pharmacodynamics, and Proposed Dosing of the Oral JAK1 and JAK2 Inhibitor Baricitinib in Pediatric and Young Adult CANDLE and SAVI Patients. Clin Pharmacol Ther. 2018;104(2):364-73. [Crossref]  [PubMed]  [PMC]
  26. Zhang S, Cai Z, Mo X, Zeng H. Tofacitinib effectiveness in Blau syndrome: a case series of Chinese paediatric patients. Pediatr Rheumatol Online J. 2021;19(1):160. [Crossref]  [PubMed]  [PMC]
  27. Petri M, Bruce IN, Dörner T, Tanaka Y, Morand EF, Kalunian KC, et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 3 trial (SLE-BRAVE-II). Lancet. 2023;401(10381):1011-9. [Crossref]  [PubMed]
  28. Barrera MJ, Aguilera S, Castro I, Matus S, Carvajal P, Molina C, et al. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: implications in Sjögren's syndrome. Rheumatology (Oxford). 2021;60(4):1951-62. [Crossref]  [PubMed]
  29. Winthrop KL, Citera G, Gold D, Henrohn D, Connell CA, Shapiro AB, et al. Age-based (<65 vs ≥65 years) incidence of infections and serious infections with tofacitinib versus biological DMARDs in rheumatoid arthritis clinical trials and the US Corrona RA registry. Ann Rheum Dis. 2021;80(1):134-6. [Crossref]  [PubMed]  [PMC]
  30. Sunzini F, McInnes I, Siebert S. JAK inhibitors and infections risk: focus on herpes zoster. Ther Adv Musculoskelet Dis. 2020;12:1759720X20936059. [Crossref]  [PubMed]  [PMC]
  31. Genovese MC, Greenwald M, Codding C, Zubrzycka-Sienkiewicz A, Kivitz AJ, Wang A, et al. Peficitinib, a JAK Inhibitor, in Combination With Limited Conventional Synthetic Disease-Modifying Antirheumatic Drugs in the Treatment of Moderate-to-Severe Rheumatoid Arthritis. Arthritis Rheumatol. 2017;69(5):932-42. [Crossref]  [PubMed]
  32. Hoisnard L, Lebrun-Vignes B, Maury S, Mahevas M, El Karoui K, Roy L, et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci Rep. 2022;12(1):7140. [Crossref]  [PubMed]  [PMC]
  33. Bilal J, Riaz IB, Naqvi SAA, Bhattacharjee S, Obert MR, Sadiq M, et al. Janus Kinase Inhibitors and Risk of Venous Thromboembolism: A Systematic Review and Meta-analysis. Mayo Clin Proc. 2021;96(7):1861-73. [Crossref]  [PubMed]
  34. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions. [cited: August 29, 2023]. Available at: [Link]