Kök Hücre
Seval Türk, Deniz Yanık
Kök hücreler, rejenerasyon ve doku onarım potansiyeline sahip özel hücrelerdir. Vücutta birçok farklı dokunun oluşturulmasında kritik bir role sahip olup hem embriyonik hem de erişkin dokulardan izole edilebilirler. Bu bölüm; kök hücrelerin kaynaklarına, türlerine, farklılaşma özelliklerine ve farklılaşmadaki sinyal yolakları ile moleküler değişikliklere odaklanmaktadır. Ayrıca diş hekimliğinde kök hücre kavramını ve çeşitli dental kök hücre kaynaklarını ele almaktadır. Özellikle diş hekimliği alanında; dental pulpa, süt dişleri, dental folikül, apikal papilla, periodontal ligament, diş eti ve alveol kemiği gibi diş ve çevre dokuların kök hücreler açısından zengin kaynaklar olduğunu belirtmek esastır. Bu kök hücrelerin varlığı, dentinpulpa kompleksinin ve periodontal dokuların rejenerasyonu için klinik potansiyele sahiptir ve bir bütün olarak diş organın oluşumunu sağlayabilir. Kök Hücre bölümü, kök hücrelerin biyokimyası ve diş hekimliği bağlamında potansiyel uygulamaları için yol gösterici olacaktır.
Referanslar
- Atalayın, Ç., Ergücü, Z., & Tezel, H. (2012). Diş hekimliğinde kök hücre ve dental pulpa kök hücreleri. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(2), 115-120.
- Li, B., Zhang, Y., Wang, Q., Dong, Z., Shang, L., Wu, L., ... & Jin, Y. (2014). Periodontal ligament stem cells modulate root resorption of human primary teeth via Runx2 regulating RANKL/OPG system. Stem Cells and Development, 23(20), 2524-2534. [Crossref]
- Bhaskar, S. N. (2012). Orban's oral histology and embriology. In Orban's oral histology and embriology. Can A. (2021). Kök Hücre. İkinci baskı. Akademisyen kitapevi. Ankara.
- Cai, X., Gong, P., Huang, Y., & Lin, Y. (2011). Notch signalling pathway in tooth development and adult dental cells. Cell Proliferation, 44(6), 495-507. [Crossref]
- Cao, C., Tarlé, S., & Kaigler, D. (2020). Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Research & Therapy, 11, 1-13. [Crossref]
- Cao, Y., Xia, D. S., Qi, S. R., Du, J., Ma, P., Wang, S. L., & Fan, Z. P. (2013). Epiregulin can promote proliferation of stem cells from the dental apical papilla via MEK/Erk and JNK signalling pathways. Cell Proliferation, 46(4), 447-456. [Crossref]
- Carinci, F., Papaccio, G., Laino, G., Palmieri, A., Brunelli, G., D'Aquino, R., et al. (2008). Comparison between genetic portraits of osteoblasts derived from primary cultures and osteoblasts obtained from human pulpal stem cells. Journal of Craniofacial Surgery, 19(3), 616-625 discussion 626-617. [Crossref]
- Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127(8):1671-1679. [Crossref]
- Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., ... & Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450(7173), 1230-1234. [Crossref]
- Chang KH, Li M. (2013). Clonal isolation of an intermediate pluripotent stem cell state. Stem Cells, 31:918- 927. [Crossref]
- Chen, J., Liu, J., Yang, J., Chen, Y., Chen, J., Ni, S., ... & Pei, D. (2011). BMPs functionally replace Klf4 and support effcient reprogramming of mouse fbroblasts by Oct4 alone. Cell research, 21(1), 205-212. [Crossref]
- Chen, M., Zhang, H., Wu, J., Xu, L., Xu, D., Sun, J., ... & Li, T. (2012). Promotion of the induction of cell pluripotency through metabolic remodeling by thyroid hormone triiodothyronine-activated PI3K/AKT signal pathway. Biomaterials, 33(22), 5514-5523. [Crossref]
- Cordeiro, M. M., Dong, Z., Kaneko, T., Zhang, Z., Miyazawa, M., Shi, S., ... & Nör, J. E. (2008). Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics, 34(8), 962-969. [Crossref]
- Cui, D., Xiao, J., Zhou, Y., Zhou, X., Liu, Y., Peng, Y., ... & Zheng, L. (2019). Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway. Cell Proliferation, 52(6), e12680. [Crossref]
- d'Aquino, R., Graziano, A., Sampaolesi, M., Laino, G., Pirozzi, G., De Rosa, A., & Papaccio, G. (2007). Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death & Differentiation, 14(6), 1162-1171. [Crossref]
- Dahlstrand, J., Lardelli, M., & Lendahl, U. (1995). Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Developmental Brain Research, 84(1), 109-129. [Crossref]
- Du, L., Yang, P., & Ge, S. (2012). Stromal cell-derived factor-1 signifcantly induces proliferation, migration, and collagen type I expression in a human periodontal ligament stem cell subpopulation. Journal of Periodontology, 83(3), 379-388. [Crossref]
- Dzierzak, E., and Bigas, A. (2018). Blood Development: Hematopoietic Stem Cell Dependence and Independence. Cell Stem Cell 22, 639-651. [Crossref]
- El-Hashash, A. H. (2020). Mesenchymal stem cells in human health and diseases: general discussion, remarks, and future directions. In Mesenchymal Stem Cells in Human Health and Diseases. Academic Press. [Crossref]
- Feng, X., Feng, G., Xing, J., Shen, B., Li, L., Tan, W., ... & Gu, Z. (2013). TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-κ B signalling pathway. Cell Biology International, 37(12), 1267-1275. [Crossref]
- Govindasamy, V., Abdullah, A. N., Ronald, V. S., Musa, S., Aziz, Z. A. C. A., Zain, R. B., ... & Kasim, N. H. A. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504-1515. [Crossref]
- Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97(25), 13625-13630. [Crossref]
- Haider, K. H. (Ed.). (2021). Stem Cells: Latest Advances. Springer Nature. [Crossref]
- Heng, B. C., Gong, T., Xu, J., Lim, L. W., & Zhang, C. (2018). EphrinB2 signalling modulates the neural differentiation of human dental pulp stem cells. Biomedical Reports, 9(2), 161-168. [Crossref]
- Ikeda, E., Morita, R., Nakao, K., Ishida, K., Nakamura, T., Takano-Yamamoto, T., ... & Tsuji, T. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences, 106(32), 13475-13480. [Crossref]
- Song, J. S., Kim, S. O., Kim, S. H., Choi, H. J., Son, H. K., Jung, H. S., ... & Lee, J. H. (2012). In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue Engineering Part A, 18(19-20), 2040-2051. [Crossref]
- Jahanbin, A., Rashed, R., Alamdari, D. H., Koohestanian, N., Ezzati, A., Kazemian, M., ... & Raisolsadat, M. A. (2016). Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. Journal of Oral and Maxillofacial Surgery, 74(4), 829-e1. [Crossref]
- Jiao, J., Dang, Y., Yang, Y., Gao, R., Zhang, Y., Kou, Z., ... & Gao, S. (2013). Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fbroblasts to pluripotency. Stem Cells, 31(4), 729-740. [Crossref]
- Kim, D., Lee, A. E., Xu, Q., Zhang, Q., & Le, A. D. (2021). Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine-a comprehensive review. Frontiers in Immunology, 12, 667221. [Crossref]
- Leyendecker Junior, A., Gomes Pinheiro, C. C., Lazzaretti Fernandes, T., & Franco Bueno, D. (2018). The use of human dental pulp stem cells for in vivo bone tissue engineering: a systematic review. Journal of Tissue Engineering, 9, 2041731417752766. [Crossref]
- Li, N., Dai, X., Yang, F., Sun, Y., Wu, X., Zhou, Q., ... & Yu, Y. (2023). Spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells maintain pluripotency of stem cells by regulating hypoxia-inducible factors. Biological Research, 56(1), 1-17. [Crossref]
- Lim, K. T., Kim, J., Seonwoo, H., Chang, J. U., Choi, H., Hexiu, J., ... & Chung, J. H. (2013). Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fuid shear stress in a rocking culture method. Tissue Engineering Part C: Methods, 19(2), 128-145. [Crossref]
- Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., ... & Ding, S. (2009). A chemical platform for improved induction of human iPSCs. Nature Methods, 6(11), 805-808. [Crossref]
- Liu, N., Zhou, M., Zhang, Q., Zhang, T., Tian, T., Ma, Q., ... & Cai, X. (2018). Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Proliferation, 51(2), e12435. [Crossref]
- Lv, T., Wu, Y., Mu, C., Liu, G., Yan, M., Xu, X., ... & Mu, J. (2016). Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Archives of Oral Biology, 72, 116-123. [Crossref]
- Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., ... & Niwa, H. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 9(6), 625-635. [Crossref]
- Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807-5812. [Crossref]
- Morsczeck, C., Götz, W., Schierholz, J., Zeilhofer, F., Kühn, U., Möhl, C., ... & Hoffmann, K. H. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155-165. [Crossref]
- Müller, A. K., Meyer, M., & Werner, S. (2012, December). The roles of receptor tyrosine kinases and their ligands in the wound repair process. In Seminars in Cell & Developmental Biology.Academic Press. [Crossref]
- Nalbantoğlu, A. M., & Yanık, D. (2023). Fenestration and dehiscence defects in maxillary anterior teeth using two classifcation systems. Australian Dental Journal, 68(1), 48-57. [Crossref]
- Nuti, N., Corallo, C., Chan, B. M. F., Ferrari, M., & Gerami-Naini, B. (2016). Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Reviews and Reports, 12, 511-523. [Crossref]
- Paino, F., La Noce, M., Giuliani, A., De Rosa, A., Mazzoni, S., Laino, L., ... & Tirino, V. (2017). Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clinical Science, 131(8), 699-713. [Crossref]
- Rezai Rad, M., Hosseinpour, S., Ye, Q., & Yao, S. (2021). Dental Tissues Originated Stem Cells for Tissue Regeneration. Regenerative Approaches in Dentistry: An Evidence-Based Perspective, 9-33. [Crossref]
- Seo, B. M., Miura, M., Gronthos, S., Bartold, P. M., Batouli, S., Brahim, J., ... & Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet, 364(9429), 149-155. [Crossref]
- Slack, J. M. (2018). The science of stem cells. John Wiley & Sons. [Crossref]
- Sonoyama, W., Liu, Y., Yamaza, T., Tuan, R. S., Wang, S., Shi, S., & Huang, G. T. J. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. Journal of Endodontics, 34(2), 166-171. [Crossref]
- Stevens, A., Zuliani, T., Olejnik, C., LeRoy, H., Obriot, H., Kerr-Conte, J., et al. (2008). Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells and Development, 17(6), 1175-1184. [Crossref]
- Tamama, K., Fan, V. H., Griffth, L. G., Blair, H. C., & Wells, A. (2006). Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells, 24(3), 686-695. [Crossref]
- Trubiani, O., Guarnieri, S., Diomede, F., Mariggiò, M. A., Merciaro, I., Morabito, C., ... & Ramazzotti, G. (2016). Nuclear translocation of PKCα isoenzyme is involved in neurogenic commitment of human neural crest-derived periodontal ligament stem cells. Cellular Signalling, 28(11), 1631-1641. [Crossref]
- Trubiani, O., Pizzicannella, J., Caputi, S., Marchisio, M., Mazzon, E., Paganelli, R., ... & Diomede, F. (2019). Periodontal ligament stem cells: current knowledge and future perspectives. Stem cells and development, 28(15), 995-1003. [Crossref]
- Vrana, N., Knopf-Marques, H., & Barthes, J. (Eds.). (2020). Biomaterials for organ and tissue regeneration: new technologies and future prospects. Woodhead Publishing.
- Wang, W., Yu, J. T., Tan, L., Liu, Q. Y., Wang, H. F., & Ma, X. Y. (2012). Insulin-like growth factor 1 (IGF1) polymorphism is associated with Alzheimer's disease in Han Chinese. Neuroscience Letters, 531(1), 20-23. [Crossref]
- Yang, H., Gao, L. N., An, Y., Hu, C. H., Jin, F., Zhou, J., ... & Chen, F. M. (2013). Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials, 34(29), 7033-7047. [Crossref]
- Yang, J., Van Oosten, A. L., Theunissen, T. W., Guo, G., Silva, J. C., & Smith, A. (2010). Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell, 7(3), 319-328. [Crossref]
- Zhang, W., Shen, X., Wan, C., Zhao, Q., Zhang, L., Zhou, Q., et al. (2012). Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: Differential signalling via Akt and ERK. Cell Biochemistry and Function, 30(4), 297-302. [Crossref]
- Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., ... & Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6), 651-655. [Crossref]
- Zhu, W., & Liang, M. (2015). Periodontal ligament stem cells: current status, concerns, and future prospects. Stem Cells International, 2015. [Crossref]