LYMPHANGIOLEIOMYOMATOSIS

Lauran A. Hipp1 Nishant Gupta2

1The Ohio State University, Faculty of Medicine, Department of Pulmonary, Critical Care and Sleep Medicine, Columbus, USA
2Cincinnati University, Faculty of Medicine, Department of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, USA

Hipp LA, Gupta N. Lymphangioleiomyomatosis. In: Altinisik G, McCormack FX, editors. Adopting Orphan Diseases: Rare Interstitial Lung Diseases. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.91-106.

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a female-predominant, low-grade systemic neoplasm characterized by the proliferation of abnormal smooth muscle-like cells resulting in progressive cystic lung disease. Other key manifestations of LAM include recurrent spontaneous pneumothoraces, lymphatic complications such as lymphadenopathy and chylous effusions, and renal AML. LAM occurs almost exclusively in women and appears to be estrogen-responsive, with symptoms worsening during pregnancy and with the use of estrogen-containing drugs. LAM occurs in two forms: sporadically (S-LAM) or in association with tuberous sclerosis complex (TSC-LAM).

LAM occurs from biallelic loss of function mutations in either TSC1 on chromosome 9q34 or TSC2 on chromosome 16p13, with TSC2 mutations being more common. LAM is classified as a perivascular epithelioid cell tumor (PEComa). LAM cells migrate or metastasize to distant sites despite appearing morphologically benign. The origin of LAM cells has been a mystery for decades, although recent evidence seems to suggest the uterus as the likely source of origin. One proposed mechanism for the migration of LAM cells is the fragmentation or “shedding” of LCCs into the lymphatic system and extra-lymphatic spaces. Once in the lymphatic system, LCCs attach to lymphatic channels through interactions with the lymphatic endothelial cell layer. LAM cells can then proliferate and form new LAM cell clusters.

The average age of diagnosis of LAM is around 35 years, although there is wide variability. The most common presenting manifestations leading to an initial diagnosis of LAM are related to the pulmonary involvement of LAM. Approximately one third of patients with LAM present with spontaneous pneumothorax. Another one third of patients present with other pulmonary symptoms such as shortness of breath, wheezing, cough, or hemoptysis. The most common reported symptoms in women with LAM include dyspnea on exertion and chronic fatigue. Increasing use of thoracic CT scans (e.g., coronary calcium scoring scans) has also resulted in incidental discovery of cystic lung disease and early discovery of LAM in several instances and is becoming more common. Renal AMLs can be seen in about one-third of women with sporadic LAM where they mostly tend to be single lesions and unilateral.

The natural course of LAM is a slow progressive decline in lung function. Approximately 25% of patients require supplemental oxygen after 10 years. After symptom onset, the estimated transplant-free survival is 90% at 10 years and 64% at 20 years. In patients with TSC, LAM is the second most common cause of death and the leading cause of death in adult women with TSC.

Definitive diagnosis of LAM must have three components: 1) supportive clinical history; 2) characteristic CT findings of lung cysts; and 3) one of the following: TSC, renal angiomyolipomas, serum VEGF-D ≥ 800pg/mL, chylous pleural effusion or chylous ascites, lymphangioleiomyomas, presence of LAM cells in effusions or lymph nodes, or histopathological confirmation by biopsy of the lung or biopsy of abdominopelvic tumors. All attempts must be made to establish a definitive diagnosis of LAM prior to initiation of treatment with mTOR inhibitors.

General principles of management in LAM include pharmacological therapy to address the underlying molecular mechanisms driving the pathogenesis of LAM, management of LAM-associated complications, and supportive care such as: 1. Trial of bronchodilators with continued use in patients with evidence of clinical benefit; 2. Vaccination against common respiratory pathogens such as pneumococcus,

influenza, RSV, and SARS-CoV-2; 3. Regular exercise and consideration of pulmonary rehabilitation to address dyspnea and muscular deconditioning; 4. Supplemental oxygen therapy as indicated based on resting or exertional desaturation; 5. Screening for osteoporosis, especially in postmenopausal patients and patients with limited physical activity due to LAM; 6. Assessing for and proactively addressing mental health concerns such as anxiety and depression; and 7. Counseling to stay physically active, maintain healthy nutrition and avoidance of pulmonary toxins such as cigarette smoke.

The last two decades have seen tremendous progress in LAM including, but not limited to, improved understanding of the molecular pathogenesis, discovery of a blood-based diagnostic biomarker, advent of a safe and effective suppressive therapy, publication of clinical practice guidelines, and the establishment and expansion of a worldwide network of clinics that not only provides high quality clinical care but also facilitates collaborative research in LAM as well as multiple other rare lung diseases. With close collaboration among the LAM patients, scientists and clinicians, LAM is well poised to continue to be an exemplar of how to make meaningful progress in a rare disease in the future as the LAM community continues its journey towards improved understanding of the molecular perturbations that drive LAM and use that knowledge to develop novel, remission inducing therapies for LAM.

Keywords: Rare interstitial lung disease; Lymphangioleiomyomatosis; LAM; Pneumothorax; Angiomyolipoma; Sirolimus

Referanslar

  1. Gupta N, Vassallo R, Wikenheiser-Brokamp KA, McCormack FX. Diffuse Cystic Lung Disease. Part I. Am J Respir Crit Care Med. 2015;191(12):1354-66. [Crossref]  [PubMed]
  2. McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. Lancet Respir Med. 2021;9(11):1313-27. [Crossref]  [PubMed]
  3. Munshi A, Hyslop AD, Kopras EJ, Gupta N. Spontaneous pneumothoraces during pregnancy in patients with lymphangioleiomyomatosis. Respir Investig. 2023;61(5):632-5. [Crossref]  [PubMed]
  4. Taveira-DaSilva AM, Johnson SR, Julien-Williams P, Johnson J, Stylianou M, Moss J. Pregnancy in lymphangioleiomyomatosis: clinical and lung function outcomes in two national cohorts. Thorax. 2020;75(10):904-7. [Crossref]  [PubMed]  [PMC]
  5. Yano S. Exacerbation of pulmonary lymphangioleiomyomatosis by exogenous oestrogen used for infertility treatment. Thorax. 2002;57(12):1085-6. [Crossref]  [PubMed]  [PMC]
  6. Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al; International Tuberous Sclerosis Complex Consensus Group. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Manage ment Recommendations. Pediatr Neurol. 2021;123:50-66. [Crossref]
  7. Krymskaya VP, McCormack FX. Lymphangioleiomyomatosis: A Monogenic Model of Malignancy. Annu Rev Med. 2017;68:69-83. [Crossref]  [PubMed]  [PMC]
  8. McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, et al; ATS/JRS Committee on Lymphangioleiomyomatosis. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med. 2016 Sep 15;194(6):748-61.
  9. McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K,et al ; National Institutes of Health Rare Lung Diseases Consortium; MILES Trial Group. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med. 2011;364(17):1595-606. [Crossref]  [PubMed]
  10. Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):140-51. [Crossref]  [PubMed]
  11. Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J. Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with siro limus. Ann Intern Med. 2011;154(12):797-805, W-292-3. [Crossref]  [PubMed]
  12. Cortinas N, Liu J, Kopras E, Memon H, Burkes R, Gupta N. Impact of Age, Menopause, and Sirolimus on Spontaneous Pneumothoraces in Lymphangioleiomyomatosis. Chest. 2022;162(6):1324-7. [Crossref]  [PubMed]  [PMC]
  13. Harknett EC, Chang WY, Byrnes S, Johnson J, Lazor R, Cohen MM, et al. Use of variability in national and regional data to estimate the prevalence of lymphangioleiomyomatosis. QJM. 2011;104(11):971-9. [Crossref]  [PubMed]
  14. Gupta N, Johnson SR. Lymphangioleiomyomatosis: No Longer Ultra-rare. Am J Respir Crit Care Med. 2024;209(4):358- [Crossref]  [PubMed]
  15. Lynn E, Forde SH, Franciosi AN, Bendstrup E, Veltkamp M, Wind AE, et al. Updated Prevalence of Lymphangioleiomyomatosis in Europe. Am J Respir Crit Care Med. 2024;209(4):456-9. [Crossref]  [PubMed]
  16. Zöllner JP, Franz DN, Hertzberg C, Nabbout R, Rosenow F, Sauter M, et al. A systematic review on the burden of illness in individuals with tuberous sclerosis complex (TSC). Orphanet J Rare Dis. 2020;15(1):23. [Crossref]  [PubMed]  [PMC]
  17. Cudzilo CJ, Szczesniak RD, Brody AS, Rattan MS, Krueger DA, Bissler JJ,et al. Lymphangioleiomyomatosis screening in women with tuberous sclerosis. Chest. 2013;144(2):578- [Crossref]  [PubMed]
  18. Ryu JH, Moss J, Beck GJ, Lee JC, Brown KK, Chapman JT, et al; NHLBI LAM Registry Group. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am J Respir Crit Care Med. 2006;173(1):105- [Crossref]  [PubMed]
  19. Astrinidis A, Khare L, Carsillo T, Smolarek T, Au KS, Northrup H, et al. Mutational analysis of the tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet. 2000;37(1):55-7. [Crossref]  [PubMed]  [PMC]
  20. Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2000;97(11):6085-90. [Crossref]  [PubMed]  [PMC]
  21. Henske EP, McCormack FX. Lymphangioleiomyomatosis a wolf in sheep’s clothing. J Clin Invest. 2012;122(11):3807- [Crossref]  [PubMed]
  22. Guo M, Yu JJ, Perl AK, Wikenheiser-Brokamp KA, Riccetti M, Zhang EY, et al. Single-Cell Transcriptomic Analysis Identifies a Unique Pulmonary Lymphangioleiomyomatosis Cell. Am J Respir Crit Care Med. 2020;202(10):1373-87. [Crossref]  [PubMed]
  23. Kumasaka T, Seyama K, Mitani K, Sato T, Souma S, Kondo T, et al. Lymphangiogenesis in lymphangioleiomyomatosis: its implication in the progression of lymphangioleiomyomatosis. Am J Surg Pathol. 2004;28(8):1007-16. [Crossref]  [PubMed]
  24. Kumasaka T, Seyama K, Mitani K, Souma S, Kashiwagi S, Hebisawa A, et al. Lymphangiogenesis-mediated shedding of LAM cell clusters as a mechanism for dissemination in lymphangioleiomyomatosis. Am J Surg Pathol. 2005;29(10):1356- [Crossref]  [PubMed]
  25. Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, et al. Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci U S A. 2009;106(8):2635-40. [Crossref]  [PubMed]  [PMC]
  26. Prizant H, Sen A, Light A, Cho SN, DeMayo FJ, Lydon JP, et al. Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol. 2013;27(9):1403-14. [Crossref]  [PubMed]  [PMC]
  27. Prizant H, Taya M, Lerman I, Light A, Sen A, Mitra S, et al. Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model. Endocr Relat Cancer. 2016;23(4):265- [Crossref]  [PubMed]
  28. Shaw BM, Kopras E, Gupta N. Menstrual Cycle-related Respiratory Symptom Variability in Patients with Lymphangioleiomyomatosis. Ann Am Thorac Soc. 2022;19(9):1619-21. [Crossref]  [PubMed]
  29. Liu HJ, Lizotte PH, Du H, Speranza MC, Lam HC, Vaughan S, et al. TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti-PD-1/anti-CTLA-4 immunotherapy. JCI Insight. 2018;3(8):e98674. [Crossref]  [PubMed]  [PMC]
  30. Maisel K, Merrilees MJ, Atochina-Vasserman EN, Lian L, Obraztsova K, Rue R, et al. Immune Checkpoint Ligand PD-L1 Is Upregulated in Pulmonary Lymphangioleiomyomatosis. Am J Respir Cell Mol Biol. 2018;59(6):723-32. [Crossref]  [PubMed]
  31. Osterburg AR, Nelson RL, Yaniv BZ, Foot R, Donica WR, Nashu MA,et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight. 2016;1(16):e87270. [Crossref]  [PubMed]  [PMC]
  32. Clements D, Dongre A, Krymskaya VP, Johnson SR. Wild type mesenchymal cells contribute to the lung pathology of lymphangioleiomyomatosis. PLoS One. 2015;10(5):e0126025. [Crossref]  [PubMed]  [PMC]
  33. Babaei-Jadidi R, Dongre A, Miller S, Castellanos Uribe M, Stewart ID, Thompson ZM, et al. Mast-Cell Tryptase Release Contributes to Disease Progression in Lymphangioleiomyomatosis. Am J Respir Crit Care Med. 2021;204(4):431- [Crossref]  [PubMed]
  34. Miller S, Stewart ID, Clements D, Soomro I, Babaei-Jadidi R, Johnson SR. Evolution of lung pathology in lymphangioleiomyomatosis: associations with disease course and treatment response. J Pathol Clin Res. 2020;6(3):215-26. [Crossref]  [PubMed]  [PMC]
  35. Dongre A, Clements D, Fisher AJ, Johnson SR. Cathepsin K in Lymphangioleiomyomatosis: LAM Cell-Fibroblast Interactions Enhance Protease Activity by Extracellular Acidification. Am J Pathol. 2017;187(8):1750-62. [Crossref]  [PubMed]
  36. Avila NA, Dwyer AJ, Rabel A, Moss J. Sporadic lymphangioleiomyomatosis and tuberous sclerosis complex with lymphangioleiomyomatosis: comparison of CT features. Radiology. 2007;242(1):277-85. [Crossref]  [PubMed]  [PMC]
  37. Gupta R, Kitaichi M, Inoue Y, Kotloff R, McCormack FX. Lymphatic manifestations of lymphangioleiomyomatosis. Lymphology. 2014;47(3):106-17.
  38. Johnson SR, Tattersfield AE. Clinical experience of lymphangioleiomyomatosis in the UK. Thorax. 2000;55(12):1052- [Crossref]  [PubMed]  [PMC]
  39. Gupta N, Lee HS, Ryu JH, Taveira-DaSilva AM, Beck GJ, Lee JC, et al; NHLBI LAM Registry Group. The NHLBI LAM Registry: Prognostic Physiologic and Radiologic Biomarkers Emerge From a 15-Year Prospective Longitudinal Analysis. Chest. 2019;155(2):288-96. [Crossref]  [PubMed]  [PMC]
  40. Zak S, Mokhallati N, Su W, McCormack FX, Franz DN, Mays M, et al. Lymphangioleiomyomatosis Mortality in Patients with Tuberous Sclerosis Complex. Ann Am Thorac Soc. 2019;16(4):509-12. [Crossref]  [PubMed]
  41. Franciosi AN, Gupta N, Murphy DJ, Wikenheiser-Brokamp KA, McCarthy C. Diffuse Cystic Lung Disease: A Clinical Guide to Recognition and Management. Chest. 2025;167(2):529-47. [Crossref]  [PubMed]
  42. Gupta N, Finlay GA, Kotloff RM, Strange C, Wilson KC, Young LR,et al; ATS Assembly on Clinical Problems. Lymphangioleiomyomatosis Diagnosis and Management: High-Resolution Chest Computed Tomography, Transbron chial Lung Biopsy, and Pleural Disease Management. An Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2017;196(10):1337-48. [Crossref]  [PubMed]
  43. Young LR, Inoue Y, McCormack FX. Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. N Engl J Med. 2008;358(2):199-200. [Crossref]  [PubMed]
  44. Young LR, Vandyke R, Gulleman PM, Inoue Y, Brown KK, Schmidt LS, et al. Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest. 2010;138(3):674-81. [Crossref]  [PubMed]  [PMC]
  45. Gupta N, Meraj R, Tanase D, James LE, Seyama K, Lynch DA, et al. Accuracy of chest high-resolution computed tomography in diagnosing diffuse cystic lung diseases. Eur Respir J. 2015;46(4):1196-9. [Crossref]  [PubMed]
  46. Gupta N, Meraj R, Tanase D, James LE, Seyama K, Lynch DA,et al. Lymphangioleiomyomatosis Diagnosis and Management: High-Resolution Chest Computed Tomography, Transbronchial Lung Biopsy, and Pleural Disease Management. An Official American Thoracic Society/ Japanese Respiratory Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2017;196(10):1337-48. [Crossref]  [PubMed]
  47. Gupta N, Henske EP. Pulmonary manifestations in tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178(3):326-37. [Crossref]  [PubMed]  [PMC]
  48. Meraj R, Wikenheiser-Brokamp KA, Young LR, Byrnes S, McCormack FX. Utility of transbronchial biopsy in the diagnosis of lymphangioleiomyomatosis. Front Med. 2012;6(4):395-405. [Crossref]  [PubMed]
  49. Gupta N, Wikenheiser-Brokamp K, Zander D, Balestra R, Selvaraju A, Niehaus K, et al. Successful diagnosis of lymphangioleiomyomatosis with transbronchial lung cryobiopsy. Lymphology. 2017;50(3):154-7.
  50. Zhe X, Schuger L. Combined Smooth Muscle and Melanocytic Differentiation in Lymphangioleiomyomatosis. Journal of Histochemistry & Cytochemistry. 2004;52(12):1537-42. [Crossref]  [PubMed]
  51. Bonetti F, Pea M, Martignoni G, Doglioni C, Zamboni G, Capelli P, et al. Clear cell (“sugar”) tumor of the lung is a lesion strictly related to angiomyolipoma— The concept of a family of lesions characterized by the presence of the perivascular epithelioid cells (PEC). Pathology. 1994;26(3):230- [Crossref]  [PubMed]
  52. Ferrans VJ, Yu ZX, Nelson WK, Valencia JC, Tatsuguchi A, Avila NA, et al. Lymphangioleiomyomatosis (LAM): a review of clinical and morphological features. J Nippon Med Sch. 2000;67(5):311-29. [Crossref]  [PubMed]
  53. Glasgow CG, Steagall WK, Taveira-Dasilva A, Pacheco-Rodriguez G, Cai X, El-Chemaly S, et al. Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med. 2010;104 Suppl 1(Suppl 1):S45-58. [Crossref]  [PubMed]  [PMC]
  54. Ando K, Kurihara M, Kataoka H, Ueyama M, Togo S, Sato T, et al. Efficacy and safety of low-dose sirolimus for treatment of lymphangioleiomyomatosis. Respir Investig. 2013;51(3):175-83. [Crossref]  [PubMed]
  55. Xu W, Yang C, Cheng C, Wang Y, Hu D, Huang J, et al. Determinants of Progression and Mortality in Lymphangioleiomyomatosis. Chest. 2023;164(1):137-48. [Crossref]  [PubMed]
  56. Singla A, Gupta N, Apewokin S, McCormack FX. Sirolimus for the treatment of lymphangioleiomyomatosis. Expert Opinion on Orphan Drugs. 2017;5(11):907-21. [Crossref]  [PubMed]
  57. Gupta N, Lee HS, Young LR, Strange C, Moss J, Singer LG, et al; NIH Rare Lung Disease Consortium.Analysis of the MILES cohort reveals determinants of disease progression and treatment response in lymphangioleiomyomatosis. European Respiratory Journal. 2019;53(4):1802066. [Crossref]  [PubMed]  [PMC]
  58. Bee J, Fuller S, Miller S, Johnson SR. Lung function response and side effects to rapamycin for lymphangioleiomyomatosis: a prospective national cohort study. Thorax. 2018;73(4):369-75. [Crossref]  [PubMed]
  59. Cottin V, Blanchard E, Kerjouan M, Lazor R, Reynaud-Gaubert M, Taille C, et al; OrphaLung network. French recommendations for the diagnosis and management of lymphangioleiomyomatosis. Respiratory Medicine and Research. 2023;83:101010. [Crossref]  [PubMed]
  60. Goldberg HJ, Harari S, Cottin V, Rosas IO, Peters E, Biswal S, et al. Everolimus for the treatment of lymphangioleiomyomatosis: a phase II study. Eur Respir J. 2015;46(3):783-94. [Crossref]  [PubMed]
  61. Almoosa KF, Ryu JH, Mendez J, Huggins JT, Young LR, Sullivan EJ, et al. Management of pneumothorax in lymphangioleiomyomatosis: effects on recurrence and lung transplantation complications. Chest. 2006;129(5):1274-81. [Crossref]  [PubMed]
  62. Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr Neurol. 2021;123:50-66. [Crossref]  [PubMed]
  63. Dickinson M, Ruckle H, Beaghler M, Hadley HR. Renal angiomyolipoma: optimal treatment based on size and symptoms. Clin Nephrol. 1998;49(5):281-6.
  64. Yamakado K, Tanaka N, Nakagawa T, Kobayashi S, Yanagawa M, Takeda K. Renal Angiomyolipoma: Relationships between Tumor Size, Aneurysm Formation, and Rupture. Radiology. 2002;225(1):78-82. [Crossref]  [PubMed]
  65. McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. The Lancet Respiratory Medicine. 2021;9(11):1313-27. [Crossref]  [PubMed]
  66. Williams JM, Racadio JM, Johnson ND, Donnelly LF, Bissler JJ. Embolization of Renal Angiomyolipomata in Patients With Tuberous Sclerosis Complex. American Journal of Kidney Diseases. 2006;47(1):95-102. [Crossref]  [PubMed]
  67. Itkin M, McCormack FX. Nonmalignant Adult Thoracic Lymphatic Disorders. Clin Chest Med. 2016;37(3):409-20. [Crossref]  [PubMed]
  68. Khawar MU, Yazdani D, Zhu Z, Jandarov R, Dilling DF, Gupta N. Clinical outcomes and survival following lung transplantation in patients with lymphangioleiomyomatosis. J Heart Lung Transplant. 2019; ;38(9):949-55. [Crossref]  [PubMed]
  69. Krishna R, Johnson SR, Ataya A, Baqir M, Baldi BG, Girod CE, et al. Sirolimus Use During Pregnancy in Women with Lymphangioleiomyomatosis. Ann Am Thorac Soc. 2025. [Crossref]  [PubMed]
  70. dei Malatesta MF, Corona LE, De Luca L, Rocca B, Manzia TM, Orlando G, et al. Successful pregnancy in a living-related kidney transplant recipient who received sirolimus throughout the whole gestation. Transplantation. 2011;91(9):e69-e71. [Crossref]  [PubMed]
  71. Faehling M, Frohnmayer S, Leschke M, Trinajstic-Schulz B, Weber J, Liewald F. Successful pregnancy complicated by persistent pneumothorax in a patient with lymphangioleiomyomatosis (LAM) on sirolimus. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(2):153-5. [PubMed]
  72. Faehling M, Wienhausen-Wilke V, Fallscheer S, Trinajstic-Schulz B, Weber J, Leschke M. Long-term stable lung function and second uncomplicated pregnancy on sirolimus in lymphangioleiomyomatosis (LAM). Sarcoidosis, Vasculitis, and Diffuse Lung Diseases: Official Journal of WASOG. 2015;32(3):259-64.
  73. Chu SH, Liu KL, Chiang YJ, Wang HH, Lai PC. Sirolimus used during pregnancy in a living related renal transplant recipient: a case report. Transplant Proc. 2008;40(7):2446- [Crossref]  [PubMed]
  74. Coscia LA, Constantinescu S, Davison JM, Moritz MJ, Armenti VT. Immunosuppressive drugs and fetal outcome. Best Practice & Research Clinical Obstetrics & Gynaecology. 2014;28(8):1174-87. [Crossref]  [PubMed]
  75. Fiocchi R, D’Elia E, Vittori C, Sebastiani R, Strobelt N, Eleftheriou G, et al. First Report of a Successful Pregnancy in an Everolimus-Treated Heart-Transplanted Patient: Neonatal Disappearance of Immunosuppressive Drugs. Am J Transplant. 2016;16(4):1319-22. [Crossref]  [PubMed]
  76. Framarino-dei-Malatesta M, Derme M, Manzia TM, Laria G, De Luca L, Fazzolari L, et al. Impact of mTOR-I on fertility and pregnancy: state of the art and review of the literature. Expert Rev Clin Immunol. 2013;9(8):781-9. [Crossref]  [PubMed]
  77. Jankowska I, Oldakowska-Jedynak U, Jabiry-Zieniewicz Z, Cyganek A, Pawlowska J, Teisseyre M, et al. Absence of teratogenicity of sirolimus used during early pregnancy in a liver transplant recipient. Transplant Proc. 2004;36(10):3232-3. [Crossref]  [PubMed]
  78. Marcus EA, Wozniak LJ, Venick RS, Ponthieux SM, Cheng EY, Farmer DG. Successful term pregnancy in an intestine-pancreas transplant recipient with chronic graft dysfunction and parenteral nutrition dependence: a case report. Transplant Proc. 2015;47(3):863-7. [Crossref]  [PubMed]  [PMC]
  79. Margoles HR, Gomez-Lobo V, Veis JH, Sherman MJ, Moore J, Jr. Successful maternal and fetal outcome in a kidney transplant patient with everolimus exposure throughout pregnancy: a case report. Transplant Proc. 2014;46(1):281- [Crossref]  [PubMed]
  80. Veroux M, Corona D, Veroux P. Pregnancy under everolimus-based immunosuppression. Transpl Int. 2011;24(12):e115- [Crossref]  [PubMed]
  81. McCormack FX, Gupta N, Finlay GR, Young LR, Taveira-DaSilva AM, Glasgow CG, et al. Official American Thoracic Society/Japanese Respiratory Society Clinical Practice Guidelines: Lymphangioleiomyomatosis Diagnosis and Management. Am J Respir Crit Care Med. 2016;194(6):748- [Crossref]  [PubMed]
  82. Chang WY, Cane JL, Kumaran M, Lewis S, Tattersfield AE, Johnson SR. A 2-year randomised placebo-controlled trial of doxycycline for lymphangioleiomyomatosis. Eur Respir J. 2014;43(4):1114-23. [Crossref]  [PubMed]
  83. Hayashida M, Yasuo M, Hanaoka M, Seyaama K, Inoue Y, Tatsumi M, et al. Reductions in pulmonary function detected in patients with lymphangioleiomyomatosis: An analysis of the Japanese National Research Project on Intractable Diseases database. Respir Investig. 2016;54(3):193-200. [Crossref]  [PubMed]
  84. Johnson SR, Tattersfield AE. Decline in lung function in lymphangioleiomyomatosis: relation to menopause and progesterone treatment. Am J Respir Crit Care Med. 1999;160(2):628-33. [Crossref]  [PubMed]
  85. McCormack FX, Inoue Y, Moss J, Singer LG, Strage C, Nakata K, et al. Efficacy and Safety of Sirolimus in Lymphangioleiomyomatosis. New England Journal of Medicine. 2011;364(17):1595-606. [Crossref]  [PubMed]
  86. Taveira-DaSilva AM, Stylianou MP, Hedin CJ, Hathaway O, Moss J. Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest. 2004;126(6):1867-74. [Crossref]  [PubMed]
  87. Young L, Lee HS, Inoue Y, Moss J, Singer LG, Strange C, et al. Serum VEGF-D a concentration as a biomarker of lymphangioleiomyomatosis severity and treatment response: a prospective analysis of the Multicenter International Lymphangioleiomyomatosis Efficacy of Sirolimus (MILES) trial. Lancet Respir Med. 2013;1(6):445-52. [Crossref]  [PubMed]
  88. Baral A, Lee S, Hussaini F, Matthew B, Lebron A, Wang M, Hsu LY, et al. Clinical Trial Validation of Automated Segmentation and Scoring of Pulmonary Cysts in Thoracic CT Scans. Diagnostics (Basel). 2024;14(14):1529. [Crossref]  [PubMed]  [PMC]
  89. Taveira-DaSilva AM, Hedin C, Stylianou MP, Travis WD, Matsui K, Ferrans VJ, et al. Reversible airflow obstruction, proliferation of abnormal smooth muscle cells, and impairment of gas exchange as predictors of outcome in lymphangioleiomyomatosis. Am J Respir Crit Care Med. 2001;164(6):1072-6. [Crossref]  [PubMed]
  90. Yoon H-Y, Kim HJ, Song JW. Long-term clinical course and outcomes in patients with lymphangioleiomyomatosis. Respiratory Research. 2022;23(1):158. [Crossref]  [PubMed]  [PMC]
  91. Moss J, Avila NA, Barnes PM, Litzenberger RA, Bechtle J, Brooks PG, et al. Prevalence and clinical characteristics of lymphangioleiomyomatosis (LAM) in patients with tuberous sclerosis complex. Am J Respir Crit Care Med. 2001;164(4):669-71. [Crossref]  [PubMed]
  92. Matsui K, Beasley MB, Nelson WK, Barnes PM, Bechtle J, Falk R, et al. Prognostic significance of pulmonary lymphangioleiomyomatosis histologic score. Am J Surg Pathol. 2001;25(4):479-84. [Crossref]  [PubMed]
  93. Hayashida M, Seyama K, Inoue Y, Fujimoto K, Kubo K. The epidemiology of lymphangioleiomyomatosis in Japan: a nationwide cross-sectional study of presenting features and prognostic factors. Respirology. 2007;12(4):523-30. [Crossref]  [PubMed]
  94. Oprescu N, McCormack FX, Byrnes S, Kinder BW. Clinical predictors of mortality and cause of death in lymphangioleiomyomatosis: a population-based registry. Lung. 2013;191(1):35-42. [Crossref]  [PubMed]
  95. Palipana AK, Gecili E, Song S, Johnson SR, Szczesniak RD, Gupta N. Predicting Individualized Lung Disease Progression in Treatment-Naive Patients With Lymphangioleiomyomatosis. Chest. 2023;163(6):1458-70. [Crossref]  [PubMed]  [PMC]