MALIGNANCY AND RARE PULMONARY COMPLICATIONS IN PRIMARY IMMUNODEFICIENCIES

Şükran Aslan Savaş 1
Eray Yıldız2

1Konya Necmettin Erbakan University, Faculty of Medicine, Department of Immunology and Allergic Diseases, Konya, Türkiye
2Necip Fazıl City Hospital, Department of Immunology and Allergic Diseases, Kahramanmaraş, Türkiye

Aslan Savaş Ş, Yıldız E. Malignancy and Rare Pulmonary Complications in Primary Immunodeficiencies. In: Arslan Ş editor. Pulmonary Pathologies and Management Strategies in Primary Immunodeficiencies. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.89-101.

ABSTRACT

Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders resulting from genetically determined defects in the immune system. In addition to recurrent infections, these conditions predispose affected individuals to autoimmunity, autoinflammation, immune dysregulation, lymphoproliferation, allergic diseases, malignancies, and gastrointestinal and pulmonary complications. The pulmonary system is among the most frequently affected organ systems in patients with PIDs. Recurrent infections, chronic inflammation, and dysregulated immune responses contribute to structural and functional alterations in lung tissue.

Notably, persistent inflammatory processes and lymphoproliferative disorders may increase the risk of malignant transformation within the lung parenchyma, potentially leading to the development of hematologic malignancies such as pulmonary lymphomas. Underlying mechanisms include intrinsic factors such as impaired genomic stability and defective immune surveillance, as well as extrinsic factors such as chronic inflammation and oncogenic viral infections, particularly Epstein-Barr virüs. Specific PID subtypes, including common variable immunodeficiency,ataxia-telangiectasia, DOCK8 deficiency, and Nijmegen breakage syndrome, have been associated with an increased risk of cancer development.

In addition, rare pulmonary complications associated with primary immunodeficiencies include interstitial lung disease, granulomatous inflammation, as well as vasculitis, amyloidosis, pulmonary alveolar proteinosis and pulmonary hypertension, Pulmonary alveolar proteinosis results from surfactant accumulation due to impaired macrophage function and may develop in certain (PIDs) as a consequence of genetic or autoimmune mechanisms. Although rare, pulmonary hypertension can occur in patients with PIDs due to factors such as recurrent infections, chronic hypoxia, vascular inflammation, and extrinsic arterial compression; it is particularly notable in severe combined immunodeficiency. Pulmonary amyloidosis is characterized by the deposition of insoluble amyloid fibrils within the lung tissue and may mimic other pulmonary diseases in its clinical and radiological presentation. Pulmonary vasculitis is predominantly associated with autoimmune mechanisms and has been linked to several monogenic (PIDs), including Adenosine deaminase 2 deficiency, COPA syndrome, RAG mutations, X-linked lymphoproliferative syndrome, STING-associated vasculopathy, and activated PI3K delta syndrome.

Early diagnosis, multidisciplinary evaluation, and the implementation of individualized treatment strategies are of critical importance in the management of these complex clinical conditions and in improving patient prognosis.

Keywords: Malignancy; Pulmonary complications; Primary immunodeficiency; Lymphoma; Pulmonary alveolar proteinosis

Referanslar

  1. Bousfiha AA, Jeddane L, Moundir A, Poli MC, Aksentijevich I, Cunningham-Rundles C, et al. The 2024 update of IUIS phenotypic classification of human inborn errors of immunity. Journal of Human Immunity. 2025;1(1) [Crossref]
  2. Thalhammer J, Kindle G, Nieters A, Rusch S, Seppänen MRJ, Fischer A, et al. Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J Allergy Clin Immunol. 2021;148(5):1332-1341.e5.
  3. Schussler E, Beasley MB, Maglione PJ. Lung Disease in Primary Antibody Deficiencies. J Allergy Clin Immunol Pract. 2016;4(6):1039-1052. [Crossref]  [PubMed]  [PMC]
  4. Riaz IB, Faridi W, Patnaik MM, Abraham RS. A Systematic Review on Predisposition to Lymphoid (B and T cell) Neoplasias in Patients With Primary Immunodeficiencies and Immune Dysregulatory Disorders (Inborn Errors of Immunity). Front Immunol. 2019;10:777. [Crossref]  [PubMed]  [PMC]
  5. Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, et al. Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141(3):1028-1035. [Crossref]  [PubMed]  [PMC]
  6. Maffeis M, Notarangelo LD, Schumacher RF, Soncini E, Soresina A, Lanfranchi A, et al. Primary Immunodeficiencies and Oncological Risk: The Experience of the Children's Hospital of Brescia. Front Pediatr. 2019;7:232. [Crossref]  [PubMed]  [PMC]
  7. Kiykim A, Eker N, Surekli O, Nain E, Kasap N, Aktürk H, et al. Malignancy and lymphoid proliferation in primary immune deficiencies; hard to define, hard to treat. Pediatric blood & cancer. 2020;67(2):e28091. [Crossref]  [PubMed]
  8. Kiaee F, Azizi G, Rafiemanesh H, Zainaldain H, Sadaat Rizvi F, Alizadeh M, et al. Malignancy in common variable immunodeficiency: a systematic review and meta-analysis. Expert review of clinical immunology. 2019;15(10):1105-1113. [Crossref]  [PubMed]
  9. Hauck F, Voss R, Urban C, Seidel MG. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J Allergy Clin Immunol. 2018;141(1):59-68. e4. [Crossref]  [PubMed]
  10. Shapiro RS. Malignancies in the setting of primary immunodeficiency: Implications for hematologists/oncologists. American journal of hematology. 2011;86(1):48-55. [Crossref]  [PubMed]
  11. Zullo A, Romiti A, Rinaldi V, Vecchione A, Tomao S, Aiuti F, et al. Gastric pathology in patients with common variable immunodeficiency. Gut. 1999;45(1):77-81. [Crossref]  [PubMed]  [PMC]
  12. Takahashi K, Kohno T, Ajima R, Sasaki H, Minna JD, Fujiwara T, et al. Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer. International journal of oncology. 2006;28(2):321-8. [Crossref]  [PubMed]
  13. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741-51. [Crossref]  [PubMed]  [PMC]
  14. Martin D, Gutkind JS. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene. 2008;27 Suppl 2:S31-42. [Crossref]  [PubMed]
  15. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Seminars in cancer biology. 2004;14(6):433-9. [Crossref]  [PubMed]
  16. Knittel G, Rehkämper T, Nieper P, Schmitt A, Flümann R, Reinhardt HC. DNA damage pathways and B-cell lymphomagenesis. Current opinion in hematology. 2018;25(4):315-322. [Crossref]  [PubMed]
  17. Wolska-Kuśnierz B, Gregorek H, Chrzanowska K, Piątosa B, Pietrucha B, Heropolitańska-Pliszka E, et al. Nijmegen Breakage Syndrome: Clinical and Immunological Features, Long-Term Outcome and Treatment Options a Retrospective Analysis. Journal of clinical immunology. 2015;35(6):538-49. [Crossref]  [PubMed]
  18. Tak Manesh A, Azizi G, Heydari A, Kiaee F, Shaghaghi M, Hossein-Khannazer N, et al. Epidemiology and pathophysiology of malignancy in common variable immunodeficiency? Allergologia et immunopathologia. 2017;45(6):602-615. [Crossref]  [PubMed]
  19. Piña-Oviedo S, Weissferdt A, Kalhor N, Moran CA. Primary Pulmonary Lymphomas. Advances in anatomic pathology. 2015;22(6):355-75. [Crossref]  [PubMed]
  20. Borie R, Wislez M, Thabut G, Antoine M, Rabbat A, Couderc LJ, et al. Clinical characteristics and prognostic factors of pulmonary MALT lymphoma. The European respiratory journal. 2009;34(6):1408-16. [Crossref]  [PubMed]
  21. Grenier PA, Brun AL, Longchampt E, Lipski M, Mellot F, Catherinot E. Primary immunodeficiency diseases of adults: a review of pulmonary complication imaging findings. Eur Radiol. 2024;34(6):4142-4154. [Crossref]  [PubMed]  [PMC]
  22. Jesenak M, Banovcin P, Jesenakova B, Babusikova E. Pulmonary manifestations of primary immunodeficiency disorders in children. Front Pediatr. 2014;2:77. [Crossref]  [PubMed]  [PMC]
  23. Ameratunga R, Allan C, Woon ST. Defining Common Variable Immunodeficiency Disorders in 2020. Immunology and allergy clinics of North America. 2020;40(3):403-420. [Crossref]  [PubMed]
  24. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012;119(7):1650-7. [Crossref]  [PubMed]  [PMC]
  25. Cabanero-Navalon MD, Garcia-Bustos V, Balastegui-Martin H, Bracke C, Mateu L, Solanich X, et al. The impact of immune dysregulation on the risk of malignancy in common variable immunodeficiency: insights from a multicenter study. Front Immunol. 2024;15:1465159. [Crossref]  [PubMed]  [PMC]
  26. Maglione PJ, Gyimesi G, Cols M, Radigan L, Ko HM, Weinberger T, et al. BAFF-driven B cell hyperplasia underlies lung disease in common variable immunodeficiency. JCI Insight. 2019;4(5) [Crossref]  [PubMed]  [PMC]
  27. Aghamohammadi A, Parvaneh N, Tirgari F, Mahjoob F, Movahedi M, Gharagozlou M, et al. Lymphoma of mucosa-associated lymphoid tissue in common variable immunodeficiency. Leukemia & lymphoma. 2006;47(2):343-6. [Crossref]  [PubMed]
  28. Shavit R, Maoz-Segal R, Frizinsky S, Haj-Yahia S, Offengenden I, Machnas-Mayan D, et al. Combined immunodeficiency (CVID and CD4 lymphopenia) is associated with a high risk of malignancy among adults with primary immune deficiency. Clinical and experimental immunology. 2021;204(2):251-257. [Crossref]  [PubMed]  [PMC]
  29. Mitui M, Nahas SA, Du LT, Yang Z, Lai CH, Nakamura K, et al. Functional and computational assessment of missense variants in the ataxia-telangiectasia mutated (ATM) gene: mutations with increased cancer risk. Hum Mutat. 2009;30(1):12-21. [Crossref]  [PubMed]  [PMC]
  30. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069-75. [Crossref]  [PubMed]  [PMC]
  31. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. [Crossref]
  32. Villaruz LC, Jones H, Dacic S, Abberbock S, Kurland BF, Stabile LP, et al. ATM protein is deficient in over 40% of lung adenocarcinomas. Oncotarget. 2016;7(36):5771457725. [Crossref]  [PubMed]  [PMC]
  33. Chen Y, Chen G, Li J, Huang YY, Li Y, Lin J, et al. Association of Tumor Protein p53 and Ataxia-Telangiectasia Mutated Comutation With Response to Immune Checkpoint Inhibitors and Mortality in Patients With Non-Small Cell Lung Cancer. JAMA network open. 2019;2(9):e1911895. [Crossref]  [PubMed]  [PMC]
  34. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046-55. [Crossref]  [PubMed]  [PMC]
  35. Ruusala A, Aspenström P. Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS letters. 2004;572(1-3):159-66. [Crossref]  [PubMed]
  36. Liu C, Bai X, Wu J, Sharma S, Upadhyaya A, Dahlberg CI, et al. N-wasp is essential for the negative regulation of B cell receptor signaling. PLoS Biol. 2013;11(11):e1001704. [Crossref]  [PubMed]  [PMC]
  37. Wang L, Cheng J, Gao J, Wang J, Liu X, Xiong L. Association between the NBS1 Glu185Gln polymorphism and lung cancer risk: a systemic review and meta-analysis. Molecular biology reports. 2013;40(3):2711-5. [Crossref]  [PubMed]
  38. Moreno Pérez D, García Martín FJ, Vázquez López R, Pérez Ruiz E, González Valentín ME, Weil Lara B, et al. [Nijme gen breakage syndrome associated with pulmonary lymphoma]. Anales espanoles de pediatria. 2002;57(6):574-7. Linfoma pulmonar asociado a síndrome de Nijmegen. [Crossref]
  39. Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010;135(2):223-35. [Crossref]  [PubMed]  [PMC]
  40. Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, et al. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med. 2008;177(7):752-62. [Crossref]  [PubMed]  [PMC]
  41. Ishii H, Trapnell BC, Tazawa R, Inoue Y, Akira M, Kogure Y, et al. Comparative study of high-resolution CT findings between autoimmune and secondary pulmonary alveolar proteinosis. Chest. 2009;136(5):1348-1355. [Crossref]  [PubMed]
  42. Suzuki T, Trapnell BC. Pulmonary Alveolar Proteinosis Syndrome. Clin Chest Med. 2016;37(3):431-40. [Crossref]  [PubMed]  [PMC]
  43. Marciano BE, Olivier KN, Folio LR, Zerbe CS, Hsu AP, Freeman AF, et al. Pulmonary Manifestations of GATA2 Deficiency. Chest. 2021;160(4):1350-1359. [Crossref]  [PubMed]  [PMC]
  44. Bush A, Pabary R. Pulmonary alveolarproteinosis in children. Breathe (Sheffield, England). 2020;16(2):200001. [Crossref]  [PubMed]  [PMC]
  45. Zhang T, Li M, Tan L, Li X. Pulmonary alveolar proteinosis induced by X-linked agammaglobulinemia: A case report. World journal of clinical cases. 2024;12(9):1644-1648. [Crossref]  [PubMed]  [PMC]
  46. Grunebaum E, Cutz E, Roifman CM. Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. J Allergy Clin Immunol. 2012;129(6):1588-93. [Crossref]  [PubMed]
  47. Zheng Y, Li Y, Mao GH, Dai HC, Li GT, Yang CL, et al. 22q11.2 deletion syndrome complicated with pulmonary alveolar proteinosis in a child: a case report. European review for medical and pharmacological sciences. 2023;27(2):687693.
  48. Simonis A, Fux M, Nair G, Mueller NJ, Haralambieva E, Pabst T, et al. Allogeneic hematopoietic cell transplantation in patients with GATA2 deficiency-a case report and comprehensive review of the literature. Ann Hematol. 2018;97(10):1961-1973. [Crossref]  [PubMed]
  49. Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, et al. Pulmonary hypertension. Nat Rev Dis Primers. 2024;10(1):1. [Crossref]  [PubMed]
  50. Thoré P, Jaïs X, Savale L, Dorfmuller P, Boucly A, Devilder M, et al. Pulmonary Hypertension in Patients with Common Variable Immunodeficiency. Journal of clinical immunology. 2021;41(7):1549-1562. [Crossref]  [PubMed]
  51. Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022;43(38):3618-3731. [Crossref]  [PubMed]
  52. HustonJ,JohnsonJ,HemnesA,PughM.Evidenceofpulmonary arterial hypertension in two patients with common variable immunodeficiency. Pulm Circ. 2020;10(2):2045894020922792. [Crossref]  [PubMed]  [PMC]
  53. Fogel LA, Grady RM, He M, Kitcharoensakkul M. Steroid-Responsive Pulmonary Hypertension in a Pediatric Patient with Chronic Granulomatous Disease and Histoplasmosis. Journal of clinical immunology. 2023;43(6):1118-1121. [Crossref]  [PubMed]  [PMC]
  54. Muchtar E, Dispenzieri A, Magen H, Grogan M, Mauermann M, McPhail ED, et al. Systemic amyloidosis from A (AA) to T (ATTR): a review. J Intern Med. 2021;289(3):268-292. [Crossref]  [PubMed]
  55. Chu H, Zhao L, Zhang Z, Gui T, Yi X, Sun X. Clinical characteristics of amyloidosis with isolated respiratory system involvement: A review of 13 cases. Annals of thoracic medicine. 2012;7(4):243-9. [Crossref]  [PubMed]  [PMC]
  56. Arslan S, Ucar R, Yavsan DM, Esen H, Maden E, Reisli I, et al. Common variable immunodeficiency and pulmonary amyloidosis: a case report. Journal of clinical immunology. 2015;35(4):344-7. [Crossref]  [PubMed]
  57. Kadiroğlu AK, Yıldırım Y, Yılmaz Z, Kayabaşı H, Avcı Y, Yıldırım MS, et al. A rare cause of secondary amyloidosis: common variable immunodeficiency disease. Case reports in nephrology. 2012;2012:860208. [Crossref]  [PubMed]  [PMC]
  58. Yunt ZX, Frankel SK, Brown KK. Diagnosis and management of pulmonary vasculitis. Therapeutic advances in respiratory disease. 2012;6(6):375-90. [Crossref]  [PubMed]
  59. Palmucci S, Inì C, Cosentino S, Fanzone L, Di Pietro S, Di Mari A, et al. Pulmonary Vasculitides: A Radiological Review Emphasizing Parenchymal HRCT Features. Diagnostics (Basel, Switzerland). 2021;11(12) [Crossref]  [PubMed]  [PMC]
  60. Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clinical reviews in allergy & immunology. 2023;65(1):1-18. [Crossref]  [PubMed]
  61. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911-20. [Crossref]  [PubMed]  [PMC]
  62. Freeman AF, Olivier KN. Hyper-IgE Syndromes and the Lung. Clin Chest Med. 2016;37(3):557-67. [Crossref]  [PubMed]  [PMC]
  63. Vece TJ, Watkin LB, Nicholas S, Canter D, Braun MC, Guillerman RP, et al. Copa Syndrome: a Novel Autosomal Dominant Immune Dysregulatory Disease. Journal of clinical immunology. 2016;36(4):377-387. [Crossref]  [PubMed]  [PMC]
  64. Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248(4962):1517-23. [Crossref]  [PubMed]
  65. Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol. 2014;133(3):880-2:e10. [Crossref]  [PubMed]  [PMC]
  66. Farmer JR, Foldvari Z, Ujhazi B, De Ravin SS, Chen K, Bleesing JJH, et al. Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency. J Allergy Clin Immunol Pract. 2019;7(6):19701985 e4.
  67. Geier CB, Farmer JR, Foldvari Z, Ujhazi B, Steininger J, Sleasman JW, et al. Vasculitis as a Major Morbidity Factor in Patients With Partial RAG Deficiency. Front Immunol. 2020;11:574738. [Crossref]  [PubMed]  [PMC]
  68. Kanegane H, Yang X, Zhao M, Yamato K, Inoue M, Hamamoto K, et al. Clinical features and outcome of X-linked lymphoproliferative syndrome type 1 (SAP deficiency) in Japan identified by the combination of flow cytometric assay and genetic analysis. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology. 2012;23(5):488-93. [Crossref]  [PubMed]
  69. Dai Y, Liu X, Zhao Z, He J, Yin Q. Stimulator of Interferon Genes-Associated Vasculopathy With Onset in Infancy: A Systematic Review of Case Reports. Front Pediatr. 2020;8:577918. [Crossref]  [PubMed]  [PMC]
  70. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507-518. [Crossref]  [PubMed]  [PMC]
  71. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V, Leahy TR, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013;342(6160):866-71. [Crossref]  [PubMed]  [PMC]
  72. Lu M, Gu W, Sheng Y, Wang J, Xu X. Case Report: Activating PIK3CD Mutation in Patients Presenting With Granulomatosis With Polyangiitis. Front Immunol. 2021;12:670312. [Crossref]  [PubMed]  [PMC]
  73. Zhang X, Wang J, Zhu K, JinY, Fu H, Mao J.Activatedphosphoinositide 3-kinase delta syndrome misdiagnosed as anti-neutrophil cytoplasmic antibody-associated vasculitis: a case report. J Int Med Res. May 2021;49(5):3000605211013222. [Crossref]  [PubMed]  [PMC]