MICROBIOTA AND NEUROPROTECTION
Ali Rıza Gündüz1
Firdevs Ezgi Uçan Tokuç2
1Antalya Training and Research Hospital, Department of Neurology, Antalya, Türkiye
2Antalya Training and Research Hospital, Department of Neurology, Antalya, Türkiye
Gündüz AR, Uçan Tokuç FE. Microbiota and Neuroprotection. Melek İM, Aydoğan S, eds. Microbiota. 1sted. Ankara: Türkiye Klinikleri; 2025. p.185-195.
ABSTRACT
Healthy microbiota, healthy host, and the right dietary strategy have effects that protect nerve cells and prevent neuroinflammation and neurodegeneration.
The healthy commensal microbiota in our gut produce neurotransmitters, antioxidant and pro-inflammatory substances, and vitamins B and K, which exert neuroprotective effects. Microbiata exhibit neuroprotective effects by converting dietary substances into bioactive metabolites, interacting with host molecules, and recycling these molecules through glycolization and glucuronidation. The major mechanisms of neuroprotective effects can be listed as direct cell-to-cell chemical signaling, regulation of immune responses, neuroplasticity, and protection of neurons against inflammation and oxidation. The role of microbiota in neuroprotection offers hope for neurological diseases.
Keywords: Brain; Brain-gut axis; Diet; Neuroprotection; Neurodegenerattive disease
Kaynak Göster
Referanslar
- Casson RJ, Chidlow G, Ebneter A, Wood JP, Crowston J, Goldberg I. Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin Exp Ophthalmol. 2012 May-Jun;40(4):350-7. Epub 2011 Apr 27. [Crossref] [PubMed]
- Garcia-Alix A, Arnaez J, Arca G, Martinez-Biarge M. Hypoxic-ischaemic encephalopathy code: A systematic review for resource-limited settings. An Pediatr (Engl Ed). 2024 Apr;100(4):275-286. Epub 2024 Apr 12. [Crossref] [PubMed]
- McDonald JW, Roeser NF, Silverstein FS, Johnston MV. Quantitative assessment of neuroprotection against NMDA-induced brain injury. Exp Neurol 1989; 106: 289-96. [Crossref] [PubMed]
- Zorov DB, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Zorov SD, et al. Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria. Biochem 2014;79(10):1017-31. [Crossref] [PubMed]
- Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15(3):189-196. [Crossref] [PubMed]
- Shandilya S, Kumar S, Kumar Jha N, Kumar Kesari K, Ruokolainen J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J Adv Res. 2021;38:223-244. Published 2021 Sep 17. [Crossref] [PubMed] [PMC]
- Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, et al. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe. 2012;12(5):611-22. [Crossref] [PubMed]
- Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7(2):269-280. [Crossref] [PubMed] [PMC]
- Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050-16055. [Crossref] [PubMed] [PMC]
- Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants Redox Signal 2011;14(10):2013-54. [Crossref] [PubMed] [PMC]
- Knapp LT, Klann E. Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory?. J Neurosci Res. 2002;70(1):1-7. [Crossref] [PubMed]
- Zhang L, Jope RS. Oxidative stress differentially modulates phosphorylation of ERK, p38 and CREB induced by NGF or EGF in PC12 cells. Neurobiol Aging. 1999;20(3):271-278. [Crossref] [PubMed]
- Castellani GC, Quinlan EM, Cooper LN, Shouval HZ. A biophysical model of bidirectional synaptic plasticity: Dependence on AMPA and NMDA receptors. Proc Natl Acad Sci U S A 2001;98(22):12772-7. [Crossref] [PubMed] [PMC]
- Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering 2017;3(1):71-82. [Crossref]
- Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composition in Parkinson's disease. Mov Disord. 2015;30(10):1351-60. [Crossref] [PubMed]
- Durmaz Celik N, Ozben S, Ozben T. Unveiling Parkinson's disease through biomarker research: current insights and future prospects. Crit Rev Clin Lab Sci. Published online March 26, 2024. [Link]
- Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep 2017;7(1): 13537. [Crossref] [PubMed] [PMC]
- Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol. 2012;113(6):1498- 1506. [Crossref] [PubMed]
- Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a d- galactose-induced accelerated aging mouse model. Anaerobe 2014;27:22-6. [Crossref] [PubMed]
- Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478. [Crossref] [PubMed]
- Jung S, Lee YJ, Kim M, Kim M, Kwak JH, Lee JW, et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J. Funct. Foods 2015, 19, 744-752. [Crossref]
- Medeiros D, McMurry K, Pfeiffer M, Newsome K, Testerman T, Graf J, et al. Slowing Alzheimer's disease progression through probiotic supplementation. Front Neurosci. 2024;18:1309075. Published 2024 Mar 6. [Crossref] [PubMed] [PMC]
- Cheon MJ, Lim SM, Lee NK, Paik HD. Probiotic Properties and Neuroprotective Effects of Lactobacillus buchneri KU200793 Isolated from Korean Fermented Foods. Int J Mol Sci. 2020;21(4):1227. Published 2020 Feb 12. [Crossref] [PubMed] [PMC]
- Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 2010;16:3394-401. [Crossref] [PubMed] [PMC]
- Bo TB, Wen J, Zhao YC, Tian SJ, Zhang XY, Wang DH. Bifidobacterium pseudolongum reduces triglycerides by modulating gut microbiota in mice fed high-fat food. J Steroid Biochem Mol Biol. 2020;198:105602. [Crossref] [PubMed]
- LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24(2):160-168. [Crossref] [PubMed]
- Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5- hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem 2019;66:43-51. [Crossref] [PubMed]
- Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015 Sep 24;163:258]. Cell. 2015;161(2):264-276. [Crossref] [PubMed] [PMC]
- Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci 2017;11:617. [Crossref] [PubMed] [PMC]
- Cuevas E, Burks S, Raymick J, Robinson B, Gómez-Crisóstomo NP, Escudero- Lourdes C, et al. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson's disease. Nutr Neurosci. 2022;25(7):1374-1391. [Crossref] [PubMed]
- West RJH, Ugbode C, Fort-Aznar L, Sweeney ST. Neuroprotective activity of ursodeoxycholic acid in CHMP2BIntron5 models of frontotemporal dementia. Neurobiol Dis. 2020;144:105047. [Crossref] [PubMed] [PMC]
- Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D,Trudeau VL, Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci. 2018;12:84. Published 2018 Feb 20. [Crossref] [PubMed] [PMC]
- Villa A, Vegeto E, Poletti A, Maggi A. Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 2016;37:372-402. [Crossref] [PubMed] [PMC]
- Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551(7682):648-652. [Link]
- Akasaka N, Fujiwara S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids. 2020;52(2):181-197. [Link]
- Erny D, Hrabeˇ de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965-977. [Crossref] [PubMed] [PMC]
- Hill MJ. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev. 1997;6 Suppl 1:S43-S45. [Crossref] [PubMed]
- Yu YX, Li YP, Gao F, Hu Q, Zhang Y, Chen D, et al. Vitamin K2 suppresses rotenone-induced microglial activation in vitro. Acta Pharmacol Sin. 2016;37(9):1178-1189. [Crossref] [PubMed] [PMC]
- Virmani A, Pinto L, Binienda Z, Ali S. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat!. Mol Neurobiol. 2013;48(2):353-362. [Crossref] [PubMed]
- Fukui H, Moraes CT. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet. 2009;18(6):1028-1036. [Crossref] [PubMed] [PMC]
- Perez-De La Cruz V, Santamaria A. Integrative hypothesis for Huntington's disease: a brief review of experimental evidence. Physiol Res. 2007;56(5):513-526. [Crossref] [PubMed]
- Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients.2019;11(10):2426. Published 2019 Oct 11. [Crossref] [PubMed] [PMC]
- Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, et al. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr Pharm Des. 2019;25(8):871-935. [Crossref] [PubMed]
- Jazayeri, SD, Mustafa S, Manap M, Al AM, Ismail A, Faujan N, et al. Survival of bifidobacteria and other selected intestinal bacteria in TPY medium supplemented with curcumin as assessed in vitro. Int. J. Probiotics Prebiotics. 2009;4:15-22. [Link]
- Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017;87:223-229. [Crossref] [PubMed]
- DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79. Published 2012 Sep 26. [Link]
- Gao Y, Zhuang Z, Gao S, Li X, Zhang, Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9(3):887-899. Published 2017 Mar 15. [Link]
- Mishra S, Mishra M, Seth P, Sharma SK. Tetrahydrocurcumin confers protection against amyloid β-induced toxicity. Neuroreport. 2011;22(1):23-27. [Crossref] [PubMed]
- Solch RJ, Aigbogun JO, Voyiadjis AG, Talkington GM, Darensbourg RM, O'Connell S, et al. Mediterranean diet adherence, gut microbiota, and Alzheimer's or Parkinson's disease risk: A systematic review. J Neurol Sci. 2022;434:120166. [Crossref] [PubMed]
- McEvoy CT, Jennings A, Steves CJ, Macgregor A, Spector T, Cassidy A. Diet patterns and cognitive performance in a UK Female Twin Registry (TwinsUK). Alzheimers Res Ther. 2024;16(1):17. Published 2024 Jan 23. [Crossref] [PubMed] [PMC]
- Millman JF, Okamoto S, Teruya T, Uema T, Ikematsu S, Shimabukuro M, et al. Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health. Nutr Rev. 2021;79(12):1362-1374. [Crossref] [PubMed] [PMC]
- Qosa H, Mohamed LA, Batarseh YS, Alqahtani S, Ibrahim B, Levine H, et al. Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. J Nutr Biochem. 2015;26(12):1479-1490. [Crossref] [PubMed] [PMC]
- Anton SD, Moehl K, Donahoo WT, Marosi K, Lee AS, Mainous AG, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018;26(2):254-268. [Crossref] [PubMed] [PMC]
- Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice [published correction appears in Hippocampus. 2009 Nov;19(11):1151]. Hippocampus. 2009;19(10):951-961. [Crossref] [PubMed] [PMC]
- Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem. 2002;82(6):1367-1375. [Crossref] [PubMed]
- Liu Z, Dai X, Zhang H, Shi R, Hui Y, Jin X, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun. 2020;11(1):855.Published 2020 Feb 18. [Crossref] [PubMed] [PMC]
- Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649-659. [Crossref] [PubMed] [PMC]
- Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G. Effects of Intermittent Fasting on Brain Metabolism. Nutrients. 2022;14(6):1275. Published 2022 Mar 17. [Crossref] [PubMed] [PMC]
- Lan AP, Chen J, Zhao Y, Chai Z, Hu Y. mTOR Signaling in Parkinson's Disease. Neuromolecular Med. 2017;19(1):1-10. [Crossref] [PubMed]
- Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol. 2010;67(1):41-52. [Crossref] [PubMed] [PMC]
- MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, et al. Altered bile acid profile associates with cognitive impairment in Alzheimer's disease-An emerging role for gut microbiome [published correction appears in Alzheimers Dement. 2019 Apr;15(4):604. Alzheimers Dement. 2019;15(1):76-92. [Link]