Monoclonal Antibodies for Cancer Therapy

Klara DALVAa , Sevim DALVA AYDEMİRb
aAnkara University Cancer Research Institute, Ankara, Türkiye
bAnkara University Biotechnology Institute, Department of Biotechnology, Ankara, Türkiye

Dalva K, Dalva Aydemir S. Monoclonal antibodies for cancer therapy. Sunguroğlu A, ed. Current Approaches in Cancer Immunotherapy. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.7-19.

ABSTRACT
Monoclonal antibodies are the mainstay of targeted cancer therapy. They work by enhancing immune system functions that suppress cancer cell activity and by directly or indirectly eliminating cancer cells with minimal damage to normal cells. These mechanisms by which they achieve this include ligand or receptor blockade, monoclonal antibody internalisation, activation of Fc gamma receptors on innate immune cells, complement activation and blockade of receptor-mediated oncogenic signalling. Early antibodies directly antagonised specific targets on cancer cells. The development of recombinant antibody technology, improved linker technologies and engineering of immunoglobulin molecules has led to increased specificity, potency, stability, half-life and the acquisition of additional effector functions to target the tumour and tumour microenvironment. Examples of therapeutic antibodies used include antibody fragments, antibody-drug conjugates, bispecific and trispecific antibodies. The use of immune checkpoint inhibitors and the targeting of circulating cytokines are complementary therapies that can be used in combination with antibodies specific for tumour-associated antigens.

Keywords: Monoclonal antibodies; antineoplastic agents; immunotherapy; immune checkpoint inhibitors; immunoconjugates

Referanslar

  1. Kumar M, Jalota A, Sahu SK, et al. Therapeutic antibodies for the prevention and treatment of cancer. J Biomed Sci. 2024;31:6 [Crossref]  [PubMed]  [PMC]
  2. Cancer Statistics. (cited: 10/03/2025). Available online: [Link]
  3. Damián-Blanco P, Ahuexoteco-Sánchez S, Carbajal-Gallardo AA, Coctecon-Chávelas FC, Rodríguez-Nava C, Vences-Velázquez A.et al . Use of monoclonal antibodies in cancer immunotherapy: types and mechanisms of action. Bol Med Hosp Infant Mex. 2023;80(3):153-64. [Crossref]
  4. Jamal-Hanjani M, Thanopoulou E, Peggs KS, Quezada SA, Swanton C. Tumour heterogeneity and immune-modulation. Curr Opin Pharmacol. 2013; 13(4):497-503. [Crossref]  [PubMed]  [PMC]
  5. Liu L, and Chen J. "Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives" Medical Review. 2022;2(6):555-69. [Crossref]  [PubMed]  [PMC]
  6. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495-7. [Crossref]
  7. Buchegger F, Vacca A, Carrel S, Schreyer M, Mach JP. Radioimmunotherapy of human colon carcinoma by 131I-labelled monoclonal anti-CEA antibodies in a nude mouse model. Int J Cancer. 1988;41(1):127-34. [Crossref]
  8. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147-57. [Crossref]
  9. Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, et al. Cancer therapy with antibodies. Nat Rev Cancer. 2024;24(6):399-426. [Crossref]  [PubMed]  [PMC]
  10. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715-25. [Crossref]
  11. Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel). 2020;9(3):34. [Crossref]  [PubMed]  [PMC]
  12. Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct Target Ther. 2022; 7(1):39. [Crossref]  [PubMed]  [PMC]
  13. Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells. 2023;12(24):2837. [Crossref]  [PubMed]  [PMC]
  14. Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother. 2020;125:110009. [Crossref]
  15. Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules. 2023;28(18):6438. [Crossref]  [PubMed]  [PMC]
  16. Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol. 2024;21(7):539-60. [Crossref]
  17. Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov. 2024; 23(4):301-19. [Crossref]
  18. Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol. 2018;10(12):a028472. [Crossref]  [PubMed]  [PMC]
  19. Tang H, Liu Y, Yu Z, Sun M, Lin L, Liu W, et al. The Analysis of Key Factors Related to ADCs Structural Design. Front Pharmacol. 2019;10:373. [Crossref]  [PubMed]  [PMC]
  20. Manis JP. Overview of Therapeutic Monoclonal Antibodies. In: Tobian A, Section Editor; Tirnauer JS, Feldweg AM, Deputy Editors. UpToDate. Wolters Kluwer; Updated August 7, 2024. (cited: 10/03/2025). Available from: [Link]
  21. Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol. 2019;10:1540. [Crossref]  [PubMed]  [PMC]
  22. Peter HH, Ochs HD, Cunningham-Rundles C, Vinh DC, Kiessling P, Greve B, Jolles S. Targeting FcRn for immunomodulation: Benefits, risks, and practical considerations. J Allergy Clin Immunol. 2020;146(3):479-91.e5. [Crossref]  [PubMed]  [PMC]
  23. Bussel, JB, Cines, DB, Blumberg, RS, Neonatal Fc Receptor — Biology and Therapeutics. New England Journal of Medicine, 2025: 392, 1621–1635. [Crossref]
  24. Guimaraes Koch SS, Thorpe R, Kawasaki N, Lefranc MP, Malan S, et al International nonproprietary names for monoclonal antibodies: an evolving nomenclature system. MAbs. 2022;14(1):2075078. [Crossref]  [PubMed]  [PMC]
  25. Is There a Biosimilar to Rituximab? Yes, Here Are 3 Rituximab Biosimilars You Should Know (last raccessed on 10/03/2025) [Link]
  26. Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, et al. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines. 2023;11(7):2086. [Crossref]  [PubMed]  [PMC]
  27. Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. Mol Biomed. 2022;3(1):35. [Crossref]  [PubMed]  [PMC]
  28. Zou X, Yao F, Yang F, Zhang F, Xu Z, Shi J, et al. Glycomic Signatures of Plasma IgG Improve Preoperative Prediction of the Invasiveness of Small Lung Nodules. Molecules. 2019 Dec 20;25(1):28. [Crossref]  [PubMed]  [PMC]
  29. Bar-Or A, O'Brien SM, Sweeney ML, Fox EJ, Cohen JA. Clinical Perspectives on the Molecular and Pharmacological Attributes of Anti-CD20 Therapies for Multiple Sclerosis. CNS Drugs. 2021;35(9):985-97. [Crossref]  [PubMed]  [PMC]
  30. Haen SP, Löffler MW, Rammensee HG, Brossart P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol. 2020;17(10):595-610. [Crossref]  [PubMed]  [PMC]
  31. Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011; 186(3):1840-8. [Crossref]
  32. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19(8):2048-60. [Crossref]  [PubMed]  [PMC]
  33. Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS,et al. TRBC1-targeting antibody-drug conjugates for the treatment of T cell cancers. Nature. 2024;628(8007):416-23.
  34. Paul S, Pearlman AH, Douglass J, Mog BJ, Hsiue EH, Hwang MS, et al. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med. 2021;13(584):eabd3595.
  35. Zhao X, Pan X, Wang Y, Zhang Y. Targeting neoantigens for cancer immunotherapy. Biomark Res. 2021;9(1):61. [Crossref]  [PubMed]  [PMC]
  36. Douglass J, Hsiue EH, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH, et al . Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol. 2021;6(57):eabd5515. [Crossref]  [PubMed]  [PMC]
  37. Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371(6533):eabc8697. [Crossref]  [PubMed]  [PMC]
  38. Andersen MH. Tumor microenvironment antigens. Semin Immunopathol. 2023;45(2):253-64. [Crossref]  [PubMed]  [PMC]
  39. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;0(8):660-9. [Crossref]  [PubMed]  [PMC]
  40. Goydel RS, Rader C. Antibody-based cancer therapy. Oncogene. 2021; 40(21):3655-64. [Crossref]  [PubMed]  [PMC]
  41. Behl A, Wani ZA, Das NN, Parmar VS, Len C, Malhotra S, et al. Monoclonal antibodies in breast cancer: A critical appraisal. Crit Rev Oncol Hematol. 2023; 183:103915. [Crossref]
  42. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules. 2020;25(20):4764.
  43. Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan JP, et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol. 2008;140(1):46-58. [Crossref]  [PubMed]  [PMC]
  44. Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B. 2023;13(10):4025-59.
  45. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020; 19(9):589-608. [Crossref]  [PubMed]  [PMC]
  46. Gout DY, Groen LS, van Egmond M. The present and future of immunocytokines for cancer treatment. Cell Mol Life Sci. 2022;79(10):509. [Crossref]  [PubMed]  [PMC]
  47. Nijhof IS, Casneuf T, van Velzen J, van Kessel B, Axel AE, Syed K, et al . CD38 expression and complement inhibitors affect response and re- [Crossref]
  48. Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res. 2007;67(3):1270-81. [Crossref]
  49. Kimura I, Kitahara H, Ooi K, Kato K, Noguchi N, Yoshizawa K, et al. Loss of epidermal growth factor receptor expression in oral squamous cell carcinoma is associated with invasiveness and epithelial-mesenchymal transition. Oncol Lett. 2016;11(1):201-7. [Crossref]  [PubMed]  [PMC]
  50. Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Queralt B, Báez L, Guardeño R, et al. Stem cell property epithelial-to-mesenchymal transition is a core transcriptional network for predicting cetuximab (Erbitux™) efficacy in KRAS wild-type tumor cells. J Cell Biochem. 2011;112(1):10-29.
  51. Sordo-Bahamonde C, Vitale M, Lorenzo-Herrero S, López-Soto A, Gonzalez S. Mechanisms of Resistance to NK Cell Immunotherapy. Cancers. 2020; 12(4):893. [Crossref]  [PubMed]  [PMC]
  52. Aldeghaither DS, Zahavi DJ, Murray JC, Fertig EJ, Graham GT, Zhang YW, et al. A Mechanism of Resistance to Antibody-Targeted Immune Attack. Cancer Immunol Res. 2019;7(2):230-43. [Crossref]  [PubMed]  [PMC]