Myocardial Mapping Techniques
Emine Şebnem DURMAZa , Aysel TÜRKVATANb
aİstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Radiology, İstanbul, Türkiye
bUniversity of Health Sciences Faculty of Medicine, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery, Training and Research Hospital, Department of Radiology, İstanbul, Türkiye
Durmaz EŞ, Türkvatan A. Myocardial mapping techniques. In: Bayraktaroğlu S, ed. Advances in Cardiovascular System Imaging. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.35-9.
ABSTRACT
Cardiac magnetic resonance (CMR) imaging is widely used as a noninvasive imaging method, renowned for its ability to assess both the structural and functional aspects of the heart, as well as detailed tissue characterization. Structural changes due to various diseases affecting the myocardium can lead to alterations in its magnetic properties. These structural changes result in changes in myocardial relaxation times, which can be measured accurately using parametric mapping techniques. Parametric mapping plays a critical role in the diagnosis of diffuse disease conditions. Additionally, it aids in evaluating response to treatment and in the risk stratification of specific cardiac diseases. This review article comprehensively discusses different mapping techniques used in CMR and their clinical benefits.
Keywords: Fibrosis; magnetic resonance imaging; myocardium
Citation
Referanslar
- Vogel-Claussen J, Rochitte CE, Wu KC, Kamel IR, Foo TK, Lima JA, et al. Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics. 2006;26(3):795-810. [Crossref]
- Ferreira VM, Piechnik SK. CMR parametric mapping as a tool for myocardial tissue characterization. Korean Circ J. 2020;50:658-76. [Crossref]
- Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19:75. [Crossref]
- Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 Mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016;9:67-81. [Crossref]
- Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, et al. Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J Magn Reson Imaging. 2011;34(6):1367-73. [Crossref]
- Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250-1. [Crossref]
- Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high resolution T1 mapping of the heart. Magn Reson Med. 2004;52:141-6. [Crossref]
- Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully integrated pulse sequence for modified Look-Locker inversion recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging. 2007;26:1081-6. [Crossref]
- Piechnik SK, Ferreira VM, Dall'Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69. [Crossref]
- Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2013;70:1274-82. [Crossref]
- Slavin GS, Hood MN, Ho VB, Stainsby JA. Breath-held myocardial T1 mapping using multiple single-point saturation recovery. In: Proc 20th Annual Meeting ISMRM, Melbourne; 2012. p. 1244.
- Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18:89. [Crossref]
- Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268-78. [Crossref]
- Treibel TA, Fontana M, Maestrini V, Castelletti S, Rosmini S, Simpson J, et al. Automatic measurement of the myocardial interstitium: synthetic extracellular volume quantification without hematocrit sampling. JACC Cardiovasc Imaging. 2016;9:54-63. [Crossref]
- Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272(3):683-9. [Crossref]
- Fernández-Jiménez R, Sánchez-González J, Aguero J, Del Trigo M, Galán-Arriola C, Fuster V, et al. Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion. J Cardiovasc Magn Reson. 2015;17:92. [Crossref]
- Topriceanu CC, Pierce I, Moon JC, Captur G. T2 and T2⁎ mapping and weighted imaging in cardiac MRI. Magn Reson Imaging. 2022;93:15-32. [Crossref]
- Chen X, Zhang Z, Zhong J, Yang Q, Yu T, Cheng Z, et al. MRI assessment of excess cardiac iron in thalassemia major: When to initiate? J Magn Reson Imaging. 2015;42(3):737-45. [Crossref]