NEUROINFLAMMATION IN AMYOTROPHIC LATERAL SCLEROSIS: DUAL ROLE, MECHANISMS, AND THERAPEUTIC IMPLICATIONS

Duygu Aydemir1 Nuriye Nuray Ulusu2 Barış İşak3

1Koç University, Faculty of Medicine, Department of Medical Biochemistry; Koç University Research Center for Translational Medicine (KUTTAM); İstanbul University, Institute of Child Health, Department of Pediatric Basic Sciences, Division of Medical Genetics, İstanbul, Türkiye
2Koç University, Faculty of Medicine, Department of Medical Biochemistry; Koç University Research Center for Translational Medicine (KUTTAM) İstanbul, Türkiye
3Marmara University, Faculty of Medicine, Department of Neurology, İstanbul, Türkiye

Aydemir D, Ulusu NN, İşak B. Neuroinflammation in Amyotrophic Lateral Sclerosis: Dual Role, Mechanisms, and Therapeutic Implications. In: Şahin Ş editor. Neuroinflammation. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.109-123.

ABSTRACT

Neuroinflammation is increasingly recognized as a complex contributor to amyotrophic lateral sclerosis (ALS) pathogenesis. Yet, whether neuroinflammation acts as a causative factor or a consequence of motor neuron degeneration remains uncertain. Neuroinflammation plays a dual role in ALS where early-stage anti-inflammatory responses promote neuronal survival, but late-stage pro-inflammatory states exacerbate neuronal damage. Key mediators include microglia, astrocytes, and peripheral immune cells, whose phenotypic shifts significantly influence disease progression. Genetic factors such as SOD1, C9orf72, TDP43, and FUS mutations further exacerbate these inflammatory pathways. This chapter comprehensively discusses neuroinflammation in ALS based on the underlying molecular and cellular mechanisms and evidence from clinical studies and drug trials. Novel interventions targeting inflammatory pathways, including immune-modulatory drugs, stem cell transplantation, and off-label treatments, hold promise but face challenges due to ALS’s heterogeneity and dynamic inflammatory states. The review also highlights innovations in preclinical models and biomarker identification, pivotal for understanding disease mechanisms and personalizing therapeutic strategies. Future research must prioritize resolving the complexities of neuroinflammatory responses, tailoring interventions to individual genetic profiles, and optimizing treatment timing to address ALS’s multifaceted pathology.

Keywords: Amyotrophic lateral sclerosis; Oxidative stress; Gliosis; Biomarkers; Immunotherapy

Referanslar

  1. Aydemir D, Ulusu NN. Importance of the serum biochemical parameters as potential biomarkers for rapid diagnosis and evaluating preclinical stage of ALS. Med Hypotheses 2020;141:109736. [Crossref]  [PubMed]
  2. Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022;11:3569. [Crossref]  [PubMed]  [PMC]
  3. Morello G, Spampinato AG, Cavallaro S. Neuroinflammation and ALS: Transcriptomic Insights into Molecular Disease Mechanisms and Therapeutic Targets. Mediators Inflamm 2017;2017:1–9. [Crossref]  [PubMed]  [PMC]
  4. Hooten KG, Beers DR, Zhao W, Appel SH. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015;12:364–75. [Crossref]  [PubMed]  [PMC]
  5. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023;8:267. [Crossref]  [PubMed]  [PMC]
  6. Guo S, Wang H, Yin Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front Aging Neurosci 2022;14. [Crossref]  [PubMed]  [PMC]
  7. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 2012;237:147–52. [Crossref]  [PubMed]  [PMC]
  8. Béland L-C, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, et al. Immunity in amyotrophic lateral sclerosis: blurred lines between excessive inflammation and inefficient immune responses. Brain Commun 2020;2. [Crossref]  [PubMed]  [PMC]
  9. Kwon HS, Koh S-H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 2020;9:42. [Crossref]  [PubMed]  [PMC]
  10. Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 2016;37:608–20. [Crossref]  [PubMed]
  11. Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK, et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proceedings of the National Academy of Sciences 2008;105:17913–8. [Crossref]  [PubMed]  [PMC]
  12. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proceedings of the National Academy of Sciences 2008;105:15558–63. [Crossref]  [PubMed]  [PMC]
  13. Zhang J, Liu Y, Liu X, Li S, Cheng C, Chen S, et al. Dynamic changes of CX3CL1/CX3CR1 axis during microglial activation and motor neuron loss in the spinal cord of ALS mouse model. Transl Neurodegener 2018;7:35. [Crossref]  [PubMed]  [PMC]
  14. Liu J, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications. Front Immunol 2017;8. [Crossref]  [PubMed]  [PMC]
  15. Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, et al. Spinal cord pathology is ameliorated by P2X7 antagonism in SOD1-G93A mouse model of amyotrophic lateral sclerosis. Dis Model Mech 2014. [Crossref]  [PubMed]  [PMC]
  16. He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024;15:96. [Crossref]  [PubMed]  [PMC]
  17. Carata E, Muci M, Di Giulio S, Mariano S, Panzarini E. Looking to the Future of the Role of Macrophages and Extracellular Vesicles in Neuroinflammation in ALS. Int J Mol Sci 2023;24:11251. [Crossref]  [PubMed]  [PMC]
  18. Zhao W, Beers DR, Henkel JS, Zhang W, Urushitani M, Julien J, et al. Extracellular mutant SOD1 induces microglialmediated motoneuron injury. Glia 2010;58:231–43. [Crossref]  [PubMed]  [PMC]
  19. Chen Y, Xia K, Chen L, Fan D. Increased Interleukin-6 Levels in the Astrocyte-Derived Exosomes of Sporadic Amyotrophic Lateral Sclerosis Patients. Front Neurosci 2019;13. [Crossref]  [PubMed]  [PMC]
  20. Brash-Arias D, Aranda-Abreu GE, Rojas-Durán F, Hernández-Aguilar ME, Toledo-Cárdenas MR, Pérez-Estudillo CA, et al. The role of astrocytes with genetic mutations linked to amyotrophic lateral sclerosis. Neurology Perspectives 2023;3:100117. [Crossref]  [PubMed]
  21. Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Vallés SL, Estrela JM. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants 2020;9:901. [Crossref]  [PubMed]  [PMC]
  22. Allen SP, Hall B, Woof R, Francis L, Gatto N, Shaw AC, et al. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain 2019;142:3771–90. [Crossref]  [PubMed]  [PMC]
  23. Varcianna A, Myszczynska MA, Castelli LM, O’Neill B, Kim Y, Talbot J, et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 2019;40:626–35. [Crossref]  [PubMed]  [PMC]
  24. Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022;10. [Crossref]  [PubMed]  [PMC]
  25. Mishra Y, Kumar A, Kaundal RK. Mitochondrial Dysfunction is a Crucial Immune Checkpoint for Neuroinflammation and Neurodegeneration: mtDAMPs in Focus. Mol Neurobiol 2024. [Crossref]  [PubMed]
  26. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2020;20:95–112. [Crossref]  [PubMed]
  27. Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, et al. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025;264:110217. [Crossref]  [PubMed]
  28. Al-Khayri JM, Ravindran M, Banadka A, Vandana CD, Priya K, Nagella P, et al. Amyotrophic Lateral Sclerosis: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Therapies. Pharmaceuticals 2024;17:1391. [Crossref]  [PubMed]  [PMC]
  29. Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021;12. [Crossref]  [PubMed]  [PMC]
  30. Gandelman M, Levy M, Cassina P, Barbeito L, Beckman JS. P2X7 receptor-induced death of motor neurons by a peroxynitrite/ FAS -dependent pathway. J Neurochem 2013;126:382–8. [Crossref]  [PubMed]  [PMC]
  31. Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L. Extracellular ATP and the P2X7receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 2010;7:33. [Crossref]  [PubMed]  [PMC]
  32. Yu C-H, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 2020;183:636-649.e18. [Crossref]  [PubMed]  [PMC]
  33. Gendron TF, Petrucelli L. Immunological drivers of amyotrophic lateral sclerosis. Sci Transl Med 2023;15. [Crossref]  [PubMed]
  34. Rajendran L, Bali J, Barr MM, Court FA, Krämer-Albers E-M, Picou F, et al. Emerging Roles of Extracellular Vesicles in the Nervous System. The Journal of Neuroscience 2014;34:15482–9. [Crossref]  [PubMed]  [PMC]
  35. Frühbeis C, Fröhlich D, Kuo WP, Krämer-Albers E-M. Ex tracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 2013;7. [Crossref]  [PubMed]  [PMC]
  36. Fröhlich D, Kuo WP, Frühbeis C, Sun J-J, Zehendner CM, Luhmann HJ, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philosophical Transactions of the Royal Society B: Biological Sciences 2014;369:20130510. [Crossref]  [PubMed]  [PMC]
  37. Pickles S, Destroismaisons L, Peyrard SL, Cadot S, Rouleau GA, Brown RH, et al. Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 2013;22:3947–59. [Crossref]  [PMC]
  38. De Cock L, Bercier V, Van Den Bosch L. New developments in pre-clinical models of ALS to guide translation, 2024, p. 477–524. [Crossref]  [PubMed]
  39. Dafinca R, Barbagallo P, Farrimond L, Candalija A, Scaber J, Ababneh NA, et al. Impairment of Mitochondrial Calcium Buffering Links Mutations in C9ORF72 and TARDBP in iPS-Derived Motor Neurons from Patients with ALS/ FTD. Stem Cell Reports 2020;14:892–908. [Crossref]  [PubMed]  [PMC]
  40. Birger A, Ben-Dor I, Ottolenghi M, Turetsky T, Gil Y, Sweetat S, et al. Human iPSC-derived astrocytes from ALS patients with mutated C9ORF72 show increased oxidative stress and neurotoxicity. EBioMedicine 2019;50:274–89. [Crossref]  [PubMed]  [PMC]
  41. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 2019;20:19–33. [Crossref]  [PubMed]  [PMC]
  42. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013;19:1264–72. [Crossref]  [PubMed]  [PMC]
  43. Al-Khayri JM, Ravindran M, Banadka A, Vandana CD, Priya K, Nagella P, et al. Amyotrophic Lateral Sclerosis: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Therapies. Pharmaceuticals 2024;17:1391. [Crossref]  [PubMed]  [PMC]
  44. FitzGerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2003;2:879–90. [Crossref]  [PubMed]
  45. Domercq M, Matute C. Neuroprotection by tetracyclines. Trends Pharmacol Sci 2004;25:609–12. [Crossref]  [PubMed]
  46. Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, et al. Modifying macrophages at the periphery has the capacity to change microglial reactivity and to extend ALS survival. Nat Neurosci 2020;23:1339–51. [Crossref]  [PubMed]
  47. Bjornskov EK, Norris FH, Mower-Kuby J. Quantitative Axon Terminal and End-plate Morphology in Amyotrophic Lateral Sclerosis. Arch Neurol 1984;41:527–30. [Crossref]  [PubMed]
  48. Sugiyama M, Takao M, Hatsuta H, Funabe S, Ito S, Obi T, et al. Increased number of astrocytes and macrophages/ microglial cells in the corpus callosum in amyotrophic lateral sclerosis. Neuropathology 2013;33:591–9. [Crossref]  [PubMed]
  49. Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of Amyotrophic Lateral Sclerosis and Its Variants. Neurol Clin 2015;33:855–76. [Crossref]  [PubMed]  [PMC]
  50. Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 2006;6:12. [Crossref]  [PubMed]  [PMC]
  51. Kovacs M, Alamón C, Maciel C, Varela V, Ibarburu S, Tarragó L, et al. The pathogenic role of c-Kit+ mast cells in the spinal motor neuron-vascular niche in ALS. Acta Neuropathol Commun 2021;9:136. [Crossref]  [PubMed]  [PMC]
  52. Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun 2020;11:1773. [Crossref]  [PubMed]  [PMC]
  53. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, et al. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol Med 2013;5:64–79. [Crossref]  [PubMed]  [PMC]
  54. Beyer-Boon ME, de Voogt HJ, van der Velde EA, Brussee JA, Schaberg A. The efficacy of urinary cytology in the detection of urothelial tumours. Sensitivity and specificity of urinary cytology. Urol Res 1978;6:3–12. [Crossref]  [PubMed]
  55. Corcia P, Tauber C, Vercoullie J, Arlicot N, Prunier C, Praline J, et al. Molecular Imaging of Microglial Activation in Amyotrophic Lateral Sclerosis. PLoS One 2012;7:e52941. [Crossref]  [PubMed]  [PMC]
  56. Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017;17:25. [Crossref]  [PubMed]
  57. Ratai E-M, Alshikho MJ, Zürcher NR, Loggia ML, Cebulla CL, Cernasov P, et al. Integrated imaging of [11C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy 1H-MRS in amyotrophic lateral sclerosis. Neuroimage Clin 2018;20:357–64. [Crossref]  [PubMed]  [PMC]
  58. Bauckneht M, Lai R, Miceli A, Schenone D, Cossu V, Donegani MI, et al. Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to [18F]-fluorodeoxyglucose PET/CT images. EJNMMI Res 2020;10:23. [Crossref]  [PubMed]  [PMC]
  59. Alshikho MJ, Zürcher NR, Loggia ML, Cernasov P, Chonde DB, Izquierdo Garcia D, et al. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology 2016;87:2554–61. [Crossref]  [PubMed]  [PMC]
  60. Zhao C-P, Zhang C, Zhou S-N, Xie Y-M, Wang Y-H, Huang H, et al. Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 2007;9:414–26. [Crossref]  [PubMed]
  61. Graves M, Fiala M, Dinglasan LA, Liu N, Sayre J, Chiappelli F, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders 2004;5:213–9. [Crossref]  [PubMed]
  62. Engelhardt JI, Tajti J, Appel SH. Lymphocytic Infiltrates in the Spinal Cord in Amyotrophic Lateral Sclerosis. Arch Neurol 1993;50:30–6. [Crossref]  [PubMed]
  63. Rusconi M, Gerardi F, Santus W, Lizio A, Sansone VA, Lunetta C, et al. Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients’ peripheral blood. Sci Rep 2017;7:7853. [Crossref]  [PubMed]  [PMC]
  64. Turhan SA, Karlsson P, Ozun Y, Gunes H, Surucu S, Toker E, et al. Identification of corneal and intra-epidermal axonal swellings in amyotrophic lateral sclerosis. Muscle Nerve 2024;69:78–86. [Crossref]  [PubMed]
  65. Jin M, Günther R, Akgün K, Hermann A, Ziemssen T. Peripheral proinflammatory Th1/Th17 immune cell shift is linked to disease severity in amyotrophic lateral sclerosis. Sci Rep 2020;10:5941. [Crossref]  [PubMed]  [PMC]
  66. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, et al. Presence of dendritic cells, MCP‐1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 2004;55:221–35. [Crossref]  [PubMed]
  67. Puentes F, Topping J, Kuhle J, van der Star BJ, Douiri A, Giovannoni G, et al. Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2014;85:274–8. [Crossref]  [PubMed]
  68. Niebroj-Dobosz I, Dziewulska D, Janik P. Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia Neuropathol 2006;44:191–6. [Crossref]  [PubMed]
  69. Koyanagi M, Egashira K, Kitamoto S, Ni W, Shimokawa H, Takeya M, et al. Role of Monocyte Chemoattractant Protein-1 in Cardiovascular Remodeling Induced by Chronic Blockade of Nitric Oxide Synthesis. Circulation 2000;102:2243–8. [Crossref]  [PubMed]
  70. Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G, et al. TREM 2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep 2017;18:1186–98. [Crossref]  [PubMed]  [PMC]
  71. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007;6:1045–53. [Crossref]  [PubMed]
  72. Genge A, van den Berg LH, Frick G, Han S, Abikoff C, Simmons A, et al. Efficacy and Safety of Ravulizumab, a Complement C5 Inhibitor, in Adults With Amyotrophic Lateral Sclerosis. JAMA Neurol 2023;80:1089. [Crossref]  [PubMed]  [PMC]
  73. Meininger V, Drory VE, Leigh PN, Ludolph A, Robberecht W, Silani V. Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: A doubleblind, randomized, multicentre, placebo-controlled trial. Amyotrophic Lateral Sclerosis 2009;10:378–83. [Crossref]  [PubMed]
  74. [Link]
  75. Milligan C, Atassi N, Babu S, Barohn RJ, Caress JB, Cudkowicz ME, et al. Tocilizumab is safe and tolerable and reduces C -reactive protein concentrations in the plasma and cerebrospinal fluid of ALS patients. Muscle Nerve 2021;64:309–20. [Crossref]  [PubMed]  [PMC]
  76. Mora JS, Genge A, Chio A, Estol CJ, Chaverri D, Hernández M, et al. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph Lateral Scler Frontotemporal Degener 2020;21:5–14.346. [Crossref]  [PubMed]
  77. Babu S, Hightower BG, Chan J, Zürcher NR, Kivisäkk P, Tseng C-EJ, et al. Ibudilast (MN-166) in amyotrophic lateral sclerosisan open label, safety and pharmacodynamic trial. Neuroimage Clin 2021;30:102672. [Crossref]  [PubMed]  [PMC]
  78. Berry JD, Paganoni S, Atassi N, Macklin EA, Goyal N, Rivner M, et al. Phase IIa trial of fingolimod for amyotrophic lateral sclerosis demonstrates acceptable acute safety and tolerability. Muscle Nerve 2017;56:1077–84. [Crossref]  [PubMed]  [PMC]
  79. Vucic S, Ryder J, Mekhael L, RD H, Mathers S, Needham M, et al. Phase 2 randomized placebo controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic lateral sclerosis (TEALS Study). Medicine 2020;99:e18904. [Crossref]  [PubMed]  [PMC]
  80. Mandrioli J, D’Amico R, Zucchi E, De Biasi S, Banchelli F, Martinelli I, et al. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclero sis. Nat Commun 2023;14:4970. [Crossref]  [PubMed]  [PMC]
  81. Salomon-Zimri S, Pushett A, Russek-Blum N, Van Eijk RPA, Birman N, Abramovich B, et al. Combination of ciprofloxacin/celecoxib as a novel therapeutic strategy for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2023;24:263–71. [Crossref]  [PubMed]
  82. Beghi E, Pupillo E, Bianchi E, Bonetto V, Luotti S, Pasetto L, et al. Effect of RNS60 in amyotrophic lateral sclerosis: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Eur J Neurol 2023;30:69–86. [Crossref]  [PubMed]  [PMC]
  83. Koch JC, Leha A, Bidner H, Cordts I, Dorst J, Günther R, et al. Safety, tolerability, and efficacy of fasudil in amyotrophic lateral sclerosis (ROCK-ALS): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2024;23:1133–46. [Crossref]  [PubMed]  [PMC]
  84. Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. IScience 2019;15:421–38. [Crossref]  [PubMed]  [PMC]
  85. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008;31:395–405. [Crossref]  [PubMed]
  86. Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal Stem Cells: A Potential Therapeutic Approach for Amyotrophic Lateral Sclerosis? Stem Cells Int 2019;2019:1–16. [Crossref]  [PubMed]  [PMC]
  87. Bedlack R, Li X, Evangelista BA, Panzetta ME, Kwan J, Gittings LM, et al. The Scientific and Therapeutic Rationale for Off-Label Treatments in Amyotrophic Lateral Sclerosis. Ann Neurol 2024. [Crossref]  [PubMed]  [PMC]