NEUROINFLAMMATION IN DEMENTIA: THE NEW HORIZONS

Özlem Totuk1
Şevki Şahin2

1 University of Health Sciences, Hamidiye Faculty of Medicine, Sancaktepe Şehit Prof. Dr. İlhan Varank Hospital, Department of Neurology, İstanbul, Türkiye
2University of Health Sciences, Hamidiye Faculty of Medicine, Sancaktepe Şehit Prof. Dr. İlhan Varank Hospital, Department of Neurology, İstanbul, Türkiye

Totuk Ö, Şahin Ş. Neuroinflammation in Dementia: The New Horizons. In: Şahin Ş editor. Neuroinflammation. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.25-35.

ABSTRACT

Dementia is an increasingly important global health issue due to the aging population. Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) are the major subtypes of primary neurodegenerative dementias, all of which share a common feature of progressive cognitive decline. Recent research has demonstrated that neuroinflammation plays a central role in the pathogenesis of these disorders. Neuroinflammation refers to a complex immune response triggered by the activation of microglial cells and astrocytes in brain tissue, which contributes to the progression of neurodegeneration.

In this review, we examine the role of neuroinflammation in the pathogenesis of primary dementias, with a particular focus on its associated biomarkers, imaging methods, and potential therapeutic strategies. Furthermore, we discuss how suppressing or modulating neuroinflammation could contribute to future treatment approaches for these neurodegenerative diseases.

Keywords: Dementia; Neuroinflammation; Alzheimer’s disease; Frontotemporal dementia; Dementia with Lewy bodies

Referanslar

  1. Varley J, Brooks DJ, Edison P. Imaging neuroinflammation in Alzheimer’s disease and other dementias: Recent advances and future directions. Alzheimers Dement J Alzheimers Assoc. 2015;11(9):1110-20. [Crossref]  [PubMed]
  2. Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev. 2021;72:101503. [Crossref]  [PubMed]  [PMC]
  3. Quick JD, Silva C, Wong JH, Lim KL, Reynolds R, Barron AM, et al. Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J Neuroinflammation. 2023 5;20(1):185. [Crossref]  [PubMed]  [PMC]
  4. Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021:;29(6):1669-81. [Crossref]  [PubMed]  [PMC]
  5. Egan MF, Kost J, Tariot PN, Aisen PS, Cummings JL, Vellas B, et al. Randomized Trial of Verubecestat for Mild-to-Moderate Alzheimer’s Disease. N Engl J Med. 2018:3;378(18):1691-703. [Crossref]  [PubMed]  [PMC]
  6. Wang C, Zong S, Cui X, Wang X, Wu S, Wang L, et al. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front Immunol. 2023;14:1117172. [Crossref]  [PubMed]  [PMC]
  7. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157-72. [Crossref]  [PubMed]
  8. Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16(6):358-72. [Crossref]  [PubMed]
  9. Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, et al. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer’s Disease Progression. Int J Mol Sci. 2023:18;24(3):1869. [Crossref]  [PubMed]  [PMC]
  10. Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J Neuroinflammation. 2023:14;20(1):165. [Crossref]  [PubMed]  [PMC]
  11. Kreisl WC, Henter ID, Innis RB. Imaging Translocator Protein as a Biomarker of Neuroinflammation in Dementia. Adv Pharmacol San Diego Calif. 2018;82:163-85. [Crossref]  [PubMed]  [PMC]
  12. Al-Ghraiybah NF, Wang J, Alkhalifa AE, Roberts AB, Raj R, Yang E, et al. Glial Cell-Mediated Neuroinflammation in Alzheimer’s Disease. Int J Mol Sci. 2022 12;23(18):10572. [Crossref]  [PubMed]  [PMC]
  13. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J Neuroinflammation. 2022:17;19(1):206. [Crossref]  [PubMed]  [PMC]
  14. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther. 2023 Sep 22;8(1):359. [Crossref]  [PubMed]  [PMC]
  15. Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells. 2022 Jun 10;11(12):1885. [Crossref]  [PubMed]  [PMC]
  16. Reading CL, Ahlem CN, Murphy MF. NM101 Phase III study of NE3107 in Alzheimer’s disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener Dis Manag. 2021 Aug;11(4):289-98. [Crossref]  [PubMed]
  17. Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci Off J Soc Neurosci. 2013:20;33(12):5352-61. [Crossref]  [PubMed]  [PMC]
  18. O’Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AKMG, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016:18;351(6279):1324-9. [Crossref]  [PubMed]  [PMC]
  19. Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med. 2017;23(6):512-33. [Crossref]  [PubMed]
  20. Woollacott IOC, Bocchetta M, Sudre CH, Ridha BH, Strand C, Courtney R, et al. Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase. 2018;24(3):166-74. [Crossref]  [PubMed]  [PMC]
  21. Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M. Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience. 2013:12;231:49-60. [Crossref]  [PubMed]
  22. Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. 2019;15(9):540-55. [Crossref]  [PubMed]
  23. Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener. 2022 18;17(1):22. [Crossref]  [PubMed]  [PMC]
  24. Dec E, Rana P, Katheria V, Dec R, Khare M, Nalbandian A, et al. Cytokine profiling in patients with VCP-associat- ed disease. Clin Transl Sci. 2014;7(1):29-32. [Crossref]  [PubMed]  [PMC]
  25. Kersaitis C, Halliday GM, Kril JJ. Regional and cellular pa- thology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuro- pathol (Berl). 2004;108(6):515-23. [Crossref]  [PubMed]
  26. González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 2014: 15;274(1–2):1-13. [Crossref]  [PubMed]
  27. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388-405. [Crossref]  [PubMed]  [PMC]
  28. Ernst A, Morgenthaler NG, Buerger K, Dodel R, Noelker C, Sommer N, et al. Procalcitonin is elevated in the cerebrospinal fluid of patients with dementia and acute neuroinflammation. J Neuroimmunol. 2007;189(1-2):169-74. [Crossref]  [PubMed]
  29. Wennström M, Hall S, Nägga K, Londos E, Minthon L, Hansson O. Cerebrospinal fluid levels of IL-6 are decreased and correlate with cognitive status in DLB patients. Alzheimers Res Ther. 2015:5;7(1):63. [Crossref]  [PubMed]  [PMC]
  30. Morenas-Rodríguez E, Alcolea D, Suárez-Calvet M, Muñoz-Llahuna L, Vilaplana E, Sala I, et al. Different pattern of CSF glial markers between dementia with Lewy bodies and Alzheimer’s disease. Sci Rep. 2019 :24;9(1):7803. [Crossref]  [PubMed]  [PMC]
  31. Hu WT, Howell JC, Ozturk T, Gangishetti U, Kollhoff AL, Hatcher-Martin JM, et al. CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Front Immunol. 2019;10:480. [Crossref]  [PubMed]  [PMC]
  32. King E, O’Brien JT, Donaghy P, Morris C, Barnett N, Olsen K, et al. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018 Apr;89(4):339-345. [Crossref]  [PubMed]  [PMC]
  33. Thomas AJ, Hamilton CA, Donaghy PC, Martin-Ruiz C, Morris CM, Barnett N, et al. Prospective longitudinal evaluation of cytokines in mild cognitive impairment due to AD and Lewy body disease. Int J Geriatr Psychiatry. 2020;35(10):1250-1259. [Crossref]  [PubMed]
  34. Amin J, Erskine D, Donaghy PC, Surendranathan A, Swann P, Kunicki AP, et al. Inflammation in dementia with Lewy bodies. Neurobiol Dis. 2022:15;168:105698. [Crossref]  [PubMed]
  35. Dickson DW, Heckman MG, Murray ME, Soto AI, Walton RL, Diehl NN, et al. APOE 4 is associated with severity of Lewy body pathology independent of Alzheimer pathology. Neurology. 2018 18;91(12):e1182-e1195. [Crossref]  [PubMed]  [PMC]
  36. Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013: 28;340(6140):1529-1530. [Crossref]  [PubMed]  [PMC]
  37. Suresh S, Larson J, Jenrow KA. Chronic neuroinflammation impairs waste clearance in the rat brain. Front Neuroanat. 2022;16:1013808. [Crossref]  [PubMed]  [PMC]
  38. Suárez-Calvet M, Capell A, Araque Caballero MÁ, Morenas-Rodríguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12):e9712. [Crossref]  [PubMed]  [PMC]
  39. Suárez-Calvet M, Kleinberger G, Araque Caballero MÁ, Brendel M, Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med. 2016;8(5):466-76. [Crossref]  [PubMed]  [PMC]
  40. Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A, Mroczko B. YKL-40 as a Potential Biomarker and a Possible Target in Therapeutic Strategies of Alzheimer’s Disease. Curr Neuropharmacol. 2017;15(6):906-17. [Crossref]  [PubMed]  [PMC]
  41. Mavroudis I, Chowdhury R, Petridis F, Karantali E, Chatzikonstantinou S, Balmus IM, et al. YKL-40 as a Potential Biomarker for the Differential Diagnosis of Alzheimer’s Disease. Med Kaunas Lith. 2021:30;58(1):60. [Crossref]  [PubMed]  [PMC]
  42. Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. 2021: 1;78(12):1471-83. [Crossref]  [PubMed]  [PMC]
  43. Chatterjee P, Vermunt L, Gordon BA, Pedrini S, Boonkamp L, Armstrong NJ, et al. Plasma glial fibrillary acidic protein in autosomal dominant Alzheimer’s disease: Associations with A-PET, neurodegeneration, and cognition. Alzheimers Dement J Alzheimers Assoc. 2023;19(7):2790-804. [Crossref]  [PubMed]
  44. Galimberti D, Schoonenboom N, Scarpini E, Scheltens P, Dutch-Italian Alzheimer Research Group. Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol. 2003;53(4):547-8. [Crossref]  [PubMed]
  45. Corrêa JD, Starling D, Teixeira AL, Caramelli P, Silva TA. Chemokines in CSF of Alzheimer’s disease patients. Arq Neuropsiquiatr. 2011;69(3):455-9. [Crossref]  [PubMed]
  46. Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O. CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PloS One. 2012;7(1):e30525. [Crossref]  [PubMed]  [PMC]
  47. Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer’s disease brains. Brain Pathol Zurich Switz. 2020;30(1):151–64. [Crossref]  [PubMed]  [PMC]
  48. Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020;19(11):940-50. [Crossref]  [PubMed]  [PMC]
  49. Ying C, Kang P, Binkley MM, Ford AL, Chen Y, Hassenstab J, et al. Neuroinflammation and amyloid deposition in the progression of mixed Alzheimer and vascular dementia. NeuroImage Clin. 2023;38:103373. [Crossref]  [PubMed]  [PMC]
  50. Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2024. Alzheimers Dement Transl Res Clin Interv. 2024: 24;10(2):e12465. [Crossref]  [PubMed]  [PMC]
  51. Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegener. 2022:5;17(1):19. [Crossref]  [PubMed]  [PMC]
  52. Dubois B, López-Arrieta J, Lipschitz S, Doskas T, Spiru L, Moroz S, et al. Masitinib for mild-to-moderate Alzheimer’s disease: results from a randomized, placebo-controlled, phase 3, clinical trial. Alzheimers Res Ther. 2023: 28;15(1):39. [Crossref]  [PubMed]  [PMC]
  53. Wang ZJ, Li XR, Chai SF, Li WR, Li S, Hou M, et al. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology. 20231;240:109716. [Crossref]  [PubMed]