NEUROINFLAMMATION IN NEUROMUSCULAR DISEASES
İbrahim Kamacı1 Arman Çakar2 Yeşim Parman3
1İstanbul University, Faculty of Medicine, Department of Neurology, Neuromuscular Disorders Unit, İstanbul, Türkiye
2İstanbul University, Faculty of Medicine, Department of Neurology, Neuromuscular Disorders Unit, İstanbul, Türkiye
3İstanbul University, Faculty of Medicine, Department of Neurology, Neuromuscular Disorders Unit, İstanbul, Türkiye
Kamacı İ, Çakar A, Parman Y. Neuroinflammation in Neuromuscular Diseases. In: Şahin Ş editor. Neuroinflammation. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.101-108.
ABSTRACT
Primary objective of inflammation is to mitigate damage caused by harmful stimuli and facilitate tissue repair. However, chronic inflammatory responses can result in cellular damage and dysfunction. This dual nature of inflammation has driven research efforts to elucidate its role in the pathogenesis of neurological disorders. Understanding the involvement of inflammatory pathways have revealed novel insights into pathophysiology, identified biomarkers, and paved the way for innovative theraphies. Modulation of inflammatory response is increasingly recognized as pivotal in the management of certain neuromuscular diseases. Microglial and astrocytic activation are associated with rapid progression and shorter survival in amyotrophic lateral sclerosis. Although metabolic and genetic neuropathies are less studied compared to motor neuron diseases, high levels of proinflammatory cytokines in diabetic patients have been linked to increased polyneuropathy frequency and neuropathic pain. A similar trend is observed in hereditary myopathies, with elevated serum cytokine levels and findings confirmed by muscle biopsy specimens.
Keywords: Amyotrophic lateral sclerosis; Myopathy; Neuropathy; Inflammation; Spinal muscular atrophy
Kaynak Göster
Referanslar
- Akcimen F, Lopez ER, Landers JE, Nath A, Chio A, Chia R, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet. 2023;24(9):642-58. [Crossref] [PubMed] [PMC]
- London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34. [Crossref] [PubMed] [PMC]
- Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312-8. [Crossref] [PubMed]
- Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10(3):253-63. [Crossref] [PubMed]
- Moisse K, Strong MJ. Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762(11-12):1083-93. [Crossref] [PubMed]
- Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia. 1998;23(3):249-56. [Crossref]
- Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C] (R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601-9. [Crossref] [PubMed]
- Martinez-Muriana A, Mancuso R, Francos-Quijorna I, Olmos-Alonso A, Osta R, Perry VH, et al. CSF1R blockade slows the progression of amyotrophic lateral sclerosis by reducing microgliosis and invasion of macrophages into peripheral nerves. Sci Rep. 2016;6:25663. [Crossref] [PubMed] [PMC]
- Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):1389-92. [Crossref] [PubMed]
- Zhao W, Beers DR, Bell S, Wang J, Wen S, Baloh RH, et al. TDP-43 activates microglia through NF-kappaB and NLRP3 inflammasome. Exp Neurol. 2015;273:24-35. [Crossref] [PubMed]
- Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42. [Crossref] [PubMed] [PMC]
- Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C. The role of monocyte chemoattractant protein MCP1/ CCL2 in neuroinflammatory diseases. J Neuroimmunol. 2010;224(1-2):93-100. [Crossref] [PubMed]
- Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):4817. [Crossref] [PubMed] [PMC]
- Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell. 2008;3(6):637-48. [Crossref] [PubMed]
- Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res. 2023;197:31-41. [Crossref] [PubMed]
- Olesen MN, Wuolikainen A, Nilsson AC, Wirenfeldt M, Forsberg K, Madsen JS, et al. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm. 2020;7(3). [Crossref] [PubMed] [PMC]
- Tortelli R, Zecca C, Piccininni M, Benmahamed S, Dell’Abate MT, Barulli MR, et al. Plasma Inflammatory Cytokines Are Elevated in ALS. Front Neurol. 2020;11:552295. [Crossref] [PubMed] [PMC]
- Vu L, An J, Kovalik T, Gendron T, Petrucelli L, Bowser R. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J Neurol Neurosurg Psychiatry. 2020;91(4):350-8. [Crossref] [PubMed] [PMC]
- Mercuri E, Sumner CJ, Muntoni F, Darras BT, Finkel RS. Spinal muscular atrophy. Nat Rev Dis Primers. 2022;8(1):52. [Crossref] [PubMed]
- Deguise MO, De Repentigny Y, McFall E, Auclair N, Sad S, Kothary R. Immune dysregulation may contribute to disease pathogenesis in spinal muscular atrophy mice. Hum Mol Genet. 2017;26(4):801-19. [Crossref] [PubMed] [PMC]
- Thomson AK, Somers E, Powis RA, Shorrock HK, Murphy K, Swoboda KJ, et al. Survival of motor neurone protein is required for normal postnatal development of the spleen. J Anat. 2017;230(2):337-46. [Crossref] [PubMed] [PMC]
- Araki S, Hayashi M, Tamagawa K, Saito M, Kato S, Komori T, et al. Neuropathological analysis in spinal muscular atrophy type II. Acta Neuropathol. 2003;106(5):441-8. [Crossref] [PubMed]
- Tarabal O, Caraballo-Miralles V, Cardona-Rossinyol A, Correa FJ, Olmos G, Llado J, et al. Mechanisms involved in spinal cord central synapse loss in a mouse model of spinal muscular atrophy. J Neuropathol Exp Neurol. 2014;73(6):519-35. [Crossref] [PubMed]
- Khayrullina G, Alipio-Gloria ZA, Deguise MO, Gagnon S, Chehade L, Stinson M, et al. Survival motor neuron protein deficiency alters microglia reactivity. Glia. 2022;70(7):1337-58. [Crossref] [PubMed] [PMC]
- Lu IN, Cheung PF, Heming M, Thomas C, Giglio G, Leo M, et al. Cell-mediated cytotoxicity within CSF and brain parenchyma in spinal muscular atrophy unaltered by nusinersen treatment. Nat Commun. 2024;15(1):4120. [Crossref] [PubMed] [PMC]
- Bonanno S, Cavalcante P, Salvi E, Giagnorio E, Malacarne C, Cattaneo M, et al. Identification of a cytokine profile in serum and cerebrospinal fluid of pediatric and adult spinal muscular atrophy patients and its modulation upon nusinersen treatment. Front Cell Neurosci. 2022;16:982760. [Crossref] [PubMed] [PMC]
- Nuzzo T, Russo R, Errico F, D’Amico A, Tewelde AG, Valletta M, et al. Nusinersen mitigates neuroinflammation in severe spinal muscular atrophy patients. Commun Med (Lond). 2023;3(1):28. [Crossref] [PubMed] [PMC]
- Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42. [Crossref] [PubMed]
- Yako H, Niimi N, Kato A, Takaku S, Tatsumi Y, Nishito Y, et al. Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions. Sci Rep. 2021;11(1):18910. [Crossref] [PubMed] [PMC]
- Juranek JK, Aleshin A, Rattigan EM, Johnson L, Qu W, Song F, et al. Morphological Changes and Immunohistochemical Expression of RAGE and its Ligands in the Sciatic Nerve of Hyperglycemic Pig (Sus Scrofa). Biochem Insights. 2010;2010(3):47-59. [Crossref] [PubMed] [PMC]
- Baka P, Escolano-Lozano F, Birklein F. Systemic inflammatory biomarkers in painful diabetic neuropathy. J Diabetes Complications. 2021;35(10):108017. [Crossref] [PubMed]
- Yamakawa I, Kojima H, Terashima T, Katagi M, Oi J, Urabe H, et al. Inactivation of TNF-alpha ameliorates diabetic neuropathy in mice. Am J Physiol Endocrinol Metab. 2011;301(5):E844-52. [Crossref] [PubMed] [PMC]
- Hussain G, Rizvi SA, Singhal S, Zubair M, Ahmad J. Serum levels of TNF-alpha in peripheral neuropathy patients and its correlation with nerve conduction velocity in type 2 diabetes mellitus. Diabetes Metab Syndr. 2013;7(4):238-42. [Crossref] [PubMed]
- Shi X, Chen Y, Nadeem L, Xu G. Beneficial effect of TNF-alpha inhibition on diabetic peripheral neuropathy. J Neuroinflammation. 2013;10:69. [Crossref] [PubMed] [PMC]
- Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther. 2018;12:171-7. [Crossref] [PubMed] [PMC]
- Zheng H, Sun W, Zhang Q, Zhang Y, Ji L, Liu X, et al. Proinflammatory cytokines predict the incidence of diabetic peripheral neuropathy over 5 years in Chinese type 2 diabetes patients: A prospective cohort study. EClinicalMedicine. 2021;31:100649. [Crossref] [PubMed] [PMC]
- Kumar A, Negi G, Sharma SS. JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: effect on neuroinflammation and antioxidant defence. Diabetes Obes Metab. 2011;13(8):750-8. [Crossref] [PubMed]
- Olympiou M, Sargiannidou I, Markoullis K, Karaiskos C, Kagiava A, Kyriakoudi S, et al. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease. Acta Neuropathol Commun. 2016;4(1):95. [Crossref] [PubMed] [PMC]
- Azevedo EP, Guimaraes-Costa AB, Bandeira-Melo C, Chimelli L, Waddington-Cruz M, Saraiva EM, et al. Inflammatory profiling of patients with familial amyloid polyneuropathy. BMC Neurol. 2019;19(1):146. [Crossref] [PubMed] [PMC]
- Luigetti M, Romano A, Guglielmino V, Sciarrone MA, Vitali F, Carbone C, et al. Serum Inflammatory Profile in Hereditary Transthyretin Amyloidosis: Mechanisms and Possible Therapeutic Implications. Brain Sci. 2022;12(12). [Crossref] [PubMed] [PMC]
- Makker PG, Duffy SS, Lees JG, et al. Characterisation of Immune and Neuroinflammatory Changes Associated with Chemotherapy-Induced Peripheral Neuropathy. PLoS One. 2017;12(1):e0170814. [Crossref] [PubMed] [PMC]
- Morgan JE, Prola A, Mariot V, Pini V, Meng J, Hourde C, et al. Necroptosis mediates myofibre death in dystrophin-deficient mice. Nat Commun. 2018;9(1):3655. [Crossref] [PubMed] [PMC]
- Saito K, Kobayashi D, Komatsu M, Yajima T, Yagihashi A, Ishikawa Y, et al. A sensitive assay of tumor necrosis factor alpha in sera from Duchenne muscular dystrophy patients. Clin Chem. 2000;46(10):1703-4. https:// pubmed.ncbi.nlm.nih.gov/11017956/ [PubMed]
- Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW. Immune-mediated mechanisms potentially regulate the disease time-course of duchenne muscular dystrophy and provide targets for therapeutic intervention. PM R. 2009;1(8):755-68. [Crossref] [PubMed] [PMC]
- Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG. IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol. 2011;187(10):5419-28. [Crossref] [PubMed] [PMC]
- Nitahara-Kasahara Y, Takeda S, Okada T. Inflammatory predisposition predicts disease phenotypes in muscular dystrophy. Inflamm Regen. 2016;36:14. [Crossref] [PubMed] [PMC]
- Peladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci. 2021;22(11). [Crossref] [PubMed] [PMC]
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13). [Crossref] [PubMed] [PMC]
- Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Shah J. Efficacy of vamorolone in treatment of Duchene muscle dystrophy. A meta-analysis. Front Neurol. 2023;14:1107474. [Crossref] [PubMed] [PMC]
- Johansson A, Carlstrom K, Ahren B, Cederquist K, Krylborg E, Forsberg H, et al. Abnormal cytokine and adrenocortical hormone regulation in myotonic dystrophy. J Clin Endocrinol Metab. 2000;85(9):3169-76. [Crossref] [PubMed]
- Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, et al. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet. 2012;21(4):852-62. [Crossref] [PubMed]
- Frisullo G, Frusciante R, Nociti V, Tasca G, Renna R, Iorio R, et al. CD8(+) T cells in facioscapulohumeral muscular dystrophy patients with inflammatory features at muscle MRI. J Clin Immunol. 2011;31(2):155-66. [Crossref] [PubMed]