NEUROINFLAMMATIONIN MOVEMENT DISORDERS: REFLECTIONS ON THE FUTURE

Derya Selçuk Demirelli1
Gençer Genç2

1 University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, Department of Neurology, İstanbul, Türkiye
2 University of Health Sciences, Şişli Hamidiye EtfalTraining and Research Hospital, Department of Neurology, İstanbul, Türkiye

Selçuk Demirelli D, Gençer G. Neuroinflammation in Movement Disorders: Reflections on The Future. In: Şahin Ş editor. Neuroinflammation. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.77-89.

ABSTRACT

Movement disorders encompass a heterogeneous group of diseases characterized by impairments in the planning, control, or execution of movement. In recent years, there has been growing interest in the role of neuroinflammation in the pathophysiology of these disorders. Neuroinflammation is a process characterized by microglial activation, an increase in pro-inflammatory cytokines, and the activation of immune cells in the central nervous system.

The role of neuroinflammation in movement disorders represents a critical area of research for the early diagnosis and treatment of these diseases. Anti-inflammatory therapies and immunomodulatory approaches show promise in mitigating the impact of neuroinflammation on the progression of movement disorders. However, further research is needed to elucidate the specific mechanisms of neuroinflammation. In this context, understanding the relationship between movement disorders and neuroinflammation could pave the way for the development of novel therapeutic targets.

Keywords: Movement disorders; Inflammation; Parkinson’s disease; Immunity

Referanslar

  1. Genç G. Atipik parkinsonizm sendromları. Parkinson Hast Harek Boz Derg 2021;24(1-2):20-34.
  2. Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol. 2006;1:127-37. [Crossref]  [PubMed]
  3. Luo X-G, Ding J-Q, Chen S-D. Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegeneration. 2010;5:12. [Crossref]  [PubMed]  [PMC]
  4. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7-35. [Crossref]  [PubMed]  [PMC]
  5. Araki T, Ikegaya Y, Koyama R. The effects of microglia-and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci. 2021;54(5):5880-901. [Crossref]  [PubMed]  [PMC]
  6. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. In: Mizuno, Y, Calne, DB, Horowski R, Poewe W, Riederer P, Youdim MBH. (eds) Advances in Research on Neurodegeneration. Springer;2000. [Crossref]  [PubMed]
  7. Akdoğan M, Yöntem M. Sitokinler. Online Türk. Sağlık Bilim. Derg. 2018;3(1):36-45.
  8. Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci. 2013;14(7):13931-57. [Crossref]  [PubMed]  [PMC]
  9. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Lee Mosley R. Neuroprotective activities of CD4+ CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leucoc Biol. 2007;82(5):1083-94. [Crossref]  [PubMed]
  10. Pajares M, I. Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells. 2020;9(7):1687. [Crossref]  [PubMed]  [PMC]
  11. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181-4. [Crossref]  [PubMed]  [PMC]
  12. Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47:495-508. [Crossref]  [PubMed]
  13. Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197-211. [Crossref]  [PubMed]
  14. Elibol B. Prakinson hastalığında nöron kaybının moleküler mekanizmaları. Elibol B, editör. Hareket Bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011.p.101-10.
  15. Schwartz M, Butovsky O, Brück W, Hanisch U-K. Microglial phenotype: is the commitment reversible? Trends Neurosci. 2006;29(2):68-74. [Crossref]  [PubMed]
  16. McGeer PL, Itagaki S, Boyes BE, McGeer E. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285-91. [Crossref]  [PubMed]
  17. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106:518-26. [Crossref]  [PubMed]
  18. Izco M, Blesa J, Verona G, Cooper JM, Alvarez-Erviti L. Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson’s disease. Neurosci Res. 2021;170:330-40. [Crossref]  [PubMed]
  19. Caputi V, Giron MC. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci. 2018;19(6):1689. [Crossref]  [PubMed]  [PMC]
  20. Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, et al. The involvement of neuroinflammation in the onset and progression of Parkinson’s disease. Int J Mol Sci. 2023;24(19):14582. [Crossref]  [PubMed]  [PMC]
  21. Grozdanov V, Bousset L, Hoffmeister M, Bliederhaeuser C, Meier C, Madiona K, et al. Increased immune activation by pathologic -synuclein in Parkinson’s disease. Ann Neurol. 2019;86(4):593-606. [Crossref]  [PubMed]
  22. Yun SP, Kim D, Kim S, Kim S, Karuppagounder SS, Kwon S-H, et al. -Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener. 2018;13:1-19. [Crossref]  [PubMed]  [PMC]
  23. Ma B, Xu L, Pan X, Sun L, Ding J, Xie C, et al. LRRK2 modulates microglial activity through regulation of chemokine (C–X3–C) receptor 1–mediated signalling pathways. Hum Mol Genet. 2016;25(16):3515-23. [Crossref]  [PubMed]  [PMC]
  24. Pizarro-Galleguillos BM, Kunert L, Brüggemann N, Prasuhn J. Neuroinflammation and mitochondrial dysfunction in parkinson’s disease: connecting neuroimaging with pathophysiology. Antioxidants. 2023;12(7):1411. [Crossref]  [PubMed]  [PMC]
  25. Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol. 2022;22(11):657-73. [Crossref]  [PubMed]  [PMC]
  26. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(1):1-21. [Crossref]  [PubMed]
  27. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382-97. [Crossref]  [PubMed]
  28. Gao H-M, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM-Y. Neuroinflammation and oxidation/nitration of -synuclein linked to dopaminergic neurodegeneration. J Neurosci. 2008;28(30):7687-98. [Crossref]  [PubMed]  [PMC]
  29. Sawada M, Imamura K, Nagatsu T. Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl . 2006:373-81. [Crossref]  [PubMed]
  30. Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, et al. The immune system in Parkinson’s disease: what we know so far. Brain. 2024;147(10):3306-24. [Crossref]  [PubMed]  [PMC]
  31. Subramaniam SR, Chesselet M-F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106:17-32. [Crossref]  [PubMed]  [PMC]
  32. Guo JD, Zhao X, Li Y, Li GR, Liu XL. Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease. Int J Mol Med. 2018;41(4):1817-25. [Crossref]  [PubMed]
  33. Al-Bachari S, Naish JH, Parker GJ, Emsley HC, Parkes LM. Blood–brain barrier leakage is increased in Parkinson’s disease. Front Physiol. 2020;11:593026. [Crossref]  [PubMed]  [PMC]
  34. Olanow CW, Prusiner SB. Is Parkinson’s disease a prion disorder? Proc Natl Acad Sci. 2009;106(31):12571-2. [Crossref]  [PubMed]  [PMC]
  35. Kim YE, Lai TT, Kim YJ, Jeon B. Preferential microglial activation associated with pathological alpha synuclein transmission. J Cli Neurosci. 2020;81:469-76. [Crossref]  [PubMed]
  36. Choi YR, Park SJ, Park SM. Molecular events underlying the cell-to-cell transmission of -synuclein. FEBS J. 2021;288(23):6593-602. [Crossref]  [PubMed]
  37. Cebrián C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5(1):3633. [Crossref]  [PubMed]  [PMC]
  38. Garretti F, Agalliu D, Lindestam Arlehamn CS, Sette A, Sulzer D. Autoimmunity in Parkinson’s disease: the role of -synuclein-specific T cells. Front immunol. 2019;10:303. [Crossref]  [PubMed]  [PMC]
  39. Saunders JAH, Estes KA, Kosloski LM, Allen HE, Dempsey KM, Torres-Russotto DR, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol. 2012;7:927-38. [Crossref]  [PubMed]  [PMC]
  40. Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson’s disease. Drugs Context. 2019;8:212553. [Crossref]  [PubMed]  [PMC]
  41. Leal MC, Casabona JC, Puntel M, Pitossi FJ. Interleukin-1 and tumor necrosis factor-: reliable targets for protective therapies in Parkinson’s disease? Front Cell Neurosci. 2013;7:53. [Crossref]  [PubMed]  [PMC]
  42. Chen H, Zhang SM, Hernán MA, Schwarzschild MA, Willett WC, Colditz GA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol. 2003;60(8):1059-64. [Crossref]  [PubMed]
  43. Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol. 1999;360:256-61. [Crossref]  [PubMed]
  44. Ren M, Han M, Wei X, Guo Y, Shi H, Zhang X, et al. FTY720 attenuates 6-OHDA-associated dopaminergic degeneration in cellular and mouse parkinsonian models. Neurochem Res. 2017;42:686-96. [Crossref]  [PubMed]
  45. Ahmed Z, Asi Y, Sailer A, Lees A, Houlden H, Revesz T, et al. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol. 2012;38(1):4-24. [Crossref]  [PubMed]
  46. Schwarz J, Weis S, Kraft E, Tatsch K, Bandmann O, Mehraein P, et al. Signal changes on MRI and increases in reactive microgliosis, astrogliosis, and iron in the putamen of two patients with multiple system atrophy. J Neurol Neurosurg Psychiatry. 1996;60(1):98-101. [Crossref]  [PubMed]  [PMC]
  47. Ishizawa K, Komori T, Sasaki S, Arai N, Mizutani T, Hirose T. Microglial activation parallels system degeneration in multiple system atrophy. J Neuropathol Exp Neurol. 2004;63(1):43-52. [Crossref]  [PubMed]
  48. Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol. 2023;14:1214677. [Crossref]  [PubMed]  [PMC]
  49. Vieira BDM, Radford RA, Chung RS, Guillemin GJ, Pountney DL. Neuroinflammation in multiple system atrophy: response to and cause of -synuclein aggregation. Front Cell Neurosci. 2015;9:437. [Crossref]  [PubMed]  [PMC]
  50. Conway KS, Camelo-Piragua S, Fisher-Hubbard A, Perry WR, Shakkottai VG, Venneti S. Multiple system atrophy pathology is associated with primary Sjögren’s syndrome. JCI Insight. 2020;5(15). [Crossref]  [PubMed]  [PMC]
  51. Ertan S. Kortikobazal dejenerasyon. Elibol B, editör. Hareket bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011. p.203-10.
  52. Dickson DW, Bergeron C, Chin S, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61(11):935-46. [Crossref]  [PubMed]
  53. Leyns CE, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener. 2017;12:1-16. [Crossref]  [PubMed]  [PMC]
  54. Von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124. [Crossref]  [PubMed]  [PMC]
  55. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci. 2015;18(11):1584-93. [Crossref]  [PubMed]  [PMC]
  56. Malpetti M, Passamonti L, Jones PS, Street D, Rittman T, Fryer TD, et al. Neuroinflammation predicts disease progression in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2021;92(7):769-75. [Crossref]  [PubMed]  [PMC]
  57. Starhof C, Winge K, Heegaard N, Skogstrand K, Friis S, Hejl A. Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. J Neuroinflammation. 2018;15:(1):305. [Crossref]  [PubMed]  [PMC]
  58. Bhatia KP, Bain P, Bajaj N, Elble RJ, Hallett M, Louis ED, et al. Tremor task force of the international parkinson and movement disorder society. Consensus Statement on the classification of tremors from the task force on tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33(1):75-87. [Crossref]  [PubMed]  [PMC]
  59. Louis ED, Faust PL, Vonsattel J-PG, Honig LS, Rajput A, Robinson CA, et al. Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain. 2007;130(12):3297-307. [Crossref]  [PubMed]
  60. Muruzheva ZM, Ivleva IS, Traktirov DS, Zubov AS, Karpenko MN. The relationship between serum interleukin-1, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor- levels and clinical features in essential tremor. Int J Neurosci. 2022;132(11):1143-9.07454.2020.1865952 [Crossref]  [PubMed]
  61. Aygün D, Dundar B. The relationship between leukocyte-based inflammation indices and essential tremor. Turk J Clin Lab. 2024;15(3):473-80. [Crossref]
  62. Pan J, Michalec M, Louis ED. Non-steroidal anti-inflammatory drug use and essential tremor. Neuroepidemiology. 2014;43(2):145-9. [Crossref]  [PubMed]
  63. Akbostancı MC. Primer Distoniler. Elibol B, editör. Hareket bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011. p.283-306.
  64. Petrozziello T, Mills AN, Vaine CA, Penney EB, Fernandez-Cerado C, Legarda GPA, et al. Neuroinflammation and histone H3 citrullination are increased in X-linked Dystonia Parkinsonism post-mortem prefrontal cortex. Neurobiol Dis. 2020;144:105032. [Crossref]  [PubMed]
  65. Simonyan K, Ludlow CL, Vortmeyer AO. Brainstem pathology in spasmodic dysphonia. Laryngoscope. 2010;120(1):121-4. [Crossref]  [PubMed]  [PMC]
  66. Baizabal-Carvallo JF, Jankovic J. Movement disorders in autoimmune diseases. Mov Dis. 2012;27(8):935-46. [Crossref]  [PubMed]
  67. Dutta D, Yadav R. Decoding Dystonia in Autoimmune Disorders: A Scoping Review. Tremor Other Hyperkinet Mov. 2024;14:60. [Crossref]  [PubMed]  [PMC]
  68. Kilic-Berkmen G, Scorr LM, Rosen A, Wu E, Freeman A, Silver M, et al. Thyroid disease in cervical dystonia. Parkinsonism Relat Dis. 2023;107:105274. [Crossref]  [PubMed]  [PMC]
  69. Schneider SA, Tschaidse L, Reisch N. Thyroid disorders and movement disorders-a systematic review. Mov Disord Clin Pract. 2023;10(3):360-8. [Crossref]  [PubMed]  [PMC]
  70. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmunity Rev. 2015;14(2):174-80. [Crossref]  [PubMed]
  71. Balint B, Vincent A, Meinck H-M, Irani SR, Bhatia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13-36. [Crossref]  [PubMed]  [PMC]
  72. Saka E. Huntington hastalığı ve diğer genetik koreler. Elibol B, editör. Hareket bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011. p.351-9.
  73. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(7):1759-66. [Crossref]  [PubMed]
  74. Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. The J Exp Med. 2008;205(8):1869-77. [Crossref]  [PubMed]  [PMC]
  75. Sapp E, Kegel K, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, et al. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol. 2001;60(2):161-72. [Crossref]  [PubMed]
  76. Silvestroni A, Faull RL, Strand AD, Möller T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport. 2009;20(12):1098-103. [Crossref]  [PubMed]
  77. Palpagama TH, Waldvogel HJ, Faull RL, Kwakowsky A. The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci. 2019;12:258. [Crossref]  [PubMed]  [PMC]
  78. Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. Journal Cell Biol. 2005;171(6):1001-12. [Crossref]  [PubMed]  [PMC]
  79. Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell. 2004;118(1):127-38. [Crossref]  [PubMed]
  80. Saba J, Couselo FL, Bruno J, Carniglia L, Durand D, Lasaga M, et al. Neuroinflammation in Huntington’s disease: a starring role for astrocyte and microglia. Curr Neuropharmacol. 2022;20(6):1116-43. [Crossref]  [PubMed]  [PMC]
  81. Çolakoğlu Z. Miyoklonus: Klinik ve elektrofizyoljik özelliklere göre ayırıcı tanı. Elibol B, editör. Hareket bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011. p.369-73. [Crossref]  [PubMed]
  82. Özkaynak SS. Herediter serebellar ataksiler. Elibol B, editör. Hareket bozuklukları. Ankara: Rotatıp Kitabevi Tic. Ltd. Şti; 2011. p.425-45.
  83. Pranzatelli MR, Tate ED. Dexamethasone, intravenous immunoglobulin, and rituximab combination immunotherapy for pediatric opsoclonus-myoclonus syndrome. Pediatr Neurol. 2017;73:48-56. [Crossref]  [PubMed]
  84. Apolloni S, Milani M, D’Ambrosi N. Neuroinflammation in Friedreich’s ataxia. Int J Mol Sci. 2022;23(11):6297. [Crossref]  [PubMed]  [PMC]
  85. McGrath-Morrow SA, Collaco JM, Crawford TO, Carson KA, Lefton-Greif MA, Zeitlin P, et al. Elevated serum IL-8 levels in ataxia telangiectasia. J Pediatr. 2010;156(4):682684. e681. [Crossref]  [PubMed]