NEUROMUSCULAR BLOCKING AGENTS AND ANTAGONISTS
Filiz Kaya
Ankara Bilkent City Hospital, Department of Anesthesiology and Reanimation, Ankara, Türkiye
Kaya F. Neuromuscular Blocking Agents and Antagonists. In: Kazancı D, editor. Anesthesiology Fast Review. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.123-133.
ABSTRACT
- Neuromuscular blocking agents exert their paralytic effects by mimicking acetylcholine.
- Depolarizing neuromuscular blocking agents (succinylcholine) act as agaonists and cause depolarization. Nondepolarizing drugs act as antagonists by preventing the binding of acetylcholine.
- Succinylcholine is the only depolarizing neuromuscular blocking drug in clinical use. Its routine use in healthy children is not recommended.
- Atracurium and cisatracurium are not significantly affected in patients with hepatic and renal impairment. Clearance of the drugs is prolonged due to hepatic and renal excretion. In these diseases, the loading dose should be kept high and the maintenance dose low.
- Adductor pollicis TOF ratio should be at least 0.90 for complete recovery of neuromuscular function.
- It should be kept in mind that residual blockade may pose a patient safety problem in the early postoperative period. Therefore, residual neuromuscular block should always be reversed.
- When reversing neuromuscular blockade, our goal should be optimal nicotinic conduction and minimal muscarinic effect.
- Sugammadexin has encapsulation properties and acts like steroidal neuromuscular blocking drugs. It should be used with caution in patients with renal insufficiency because of renal excretion.
Keywords: Neuromuscular junction; Acetylcholine receptors; Neuromuscular blocking agent; Neuromuscular depolarizing agents; Neuromuscular nondepolarizing agents; Sugammadex
×
Kaynak Göster
Referanslar
- Gropper M.A, Cohen NH, Eriksson LI, Fleisher LA, Leslie K, Wiener-Kronish JP, eds Erdem AF, Sağır Ö, çeviri editörleri. Miller Anestezi Cilt 1: Nöromusküler Fizyoloji ve Farmakoloji. 9. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2022. p. 333-353. [Link]
- Butterworth JF, Mackey DC, Wasnick JD, eds Işık B, Erel S, çeviri editörleri. Morgan & Mikhail Klinik Anesteziyoloji: Nöromusküler Bloke Edici ajanlar.7. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2024. p. 193-215. [Link]
- Catterall WA, Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels. 2023;17(1). [Crossref] [PubMed] [PMC]
- Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83(1):117-61. [Crossref] [PubMed]
- Weingarten TN, Araka CN, Mogensen ME, Sorenson JP, Marienau ME, Watson JC, et. al. Lambert-Eaton myasthenic syndrome during anesthesia: a report of 37 patients. Clin Anesth. 2014;26(8):648-53. [Crossref] [PubMed]
- Kına G, Şahin AS, Derbent A, Salihoğlu Z.The Effect of Magnesium on Duration of Intubation in Obese and Preeclamptic Caesarean Patients. İKSST Derg 2018;10(3):155-159. [Link]
- Dube L, Granry C. The therapeutic use of magnesium in anesthesiology, intensive care and emergency medicine: a review. Canadian Journal of Anaesthesia 2003;50(7):732-46. [Crossref] [PubMed]
- Lee S, Yang HS, Sasakawa T, Khan MA, Khatri A, Kaneki M, et al. Immobilization with atrophy induces de novo expression of neuronal nicotinic α7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology. 2014;120(1):76-85. [Crossref] [PubMed] [PMC]
- Maqusood S, Bele A, Verma N, Dash S, Bawiskar D. Sugammadex vs Neostigmine, a Comparison in Reversing Neuromuscular Blockade: A Narrative Review. Cureus. 2024;16(7): e65656. [Crossref] [PubMed]
- Albuquerque EX, Alkondon M, Pereira EF, Castro NG, Schrattenholz A, Barbosa CT, et al. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther. 1997;280(3):1117-36. [Crossref] [PubMed]
- Maelicke A, Coban T, Storch A, Schrattenholz A, Pereira EF, Albuquerque EX. Allosteric modulation of Torpedo nicotinic acetylcholine receptor ion channel activity by noncompetitive agonists. J Recept Signal Transduct Res. 1997;17(1-3):11-28. [Crossref] [PubMed]
- Gage PW. Ion channels and postsynaptic potentials. Biophys Chem. 1988;29(1-2):95-101. [Crossref] [PubMed]
- Gissen AJ, Katz RL, Karis JH, Papper EM. Neuromuscular block in man during prolonged arterial infusion with succinylcholine. Anesthesiology. 1966;27(3):242-9. [Crossref] [PubMed]
- Torda TA, Graham GG, Warwick NR, Donohue P. Pharmacokinetics and pharmacodynamics of suxamethonium. Anaesth Intensive Care. 1997;25(3):272-8. [Crossref] [PubMed]
- Jensen FS, Schwartz M, Viby-Mogensen J. Identification of human plasma cholinesterase variants using molecular biological techniques. Acta Anaesthesiol Scand. 1995;39(2):142-9. [Crossref] [PubMed]
- Naguib M, Lien CA. Pharmacology of Muscle Relaxants and Their Antagonists. In Miller RD ed. Anesthesia. 7 th ed. Philadelphia: Churchill Livingstone; 2010:859- 911. [Crossref] [PubMed] [PMC]
- Guihard B, Chollet-Xémard C, Lakhnati P, Vivien B, Broche C,et.al. Effect of Rocuronium vs Succinylcholine on Endotracheal Intubation Success Rate Among Patients Undergoing Out-of-Hospital Rapid Sequence Intubation: A Randomized Clinical Trial. JAMA. 2019;322(23):2303-2312. [Crossref] [PubMed] [PMC]
- Galindo AHF, Davis TB. Succinylcholine and cardiac excitability. Anesthesiology. 1962; 23:32-40. 94. [Crossref] [PubMed]
- Goat VA, Feldman SA. The dual action of suxamethonium on the isolated rabbit heart. Anaesthesia. 1972;27(2):149-53. [Crossref] [PubMed]
- Derbyshire DR, Smith G. Sympathoadrenal responses to anaesthesia and surgery. Br J Anaesth. 1984;56(7):725-39. [Crossref] [PubMed]
- Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104(1):158-69. [Crossref] [PubMed]
- Gronert GA. Cardiac arrest after succinylcholine: mortality greater with rhabdomyolysis than receptor upregulation. Anesthesiology. 2001;94(3):523-9. [Crossref] [PubMed]
- Antognini JA, Gronert GA. Succinylcholine causes profound hyperkalemia in hemorrhagic, acidotic rabbits. Anesth Analg. 1993;77(3):585-8. [Crossref] [PubMed]
- Lennerstrand G, Bolzani R, Tian S, Benassi M, Fusari M, Campos E, et al. Succinylcholine activation of human horizontal eye muscles. Acta Ophthalmol. 2010;88(8):872-6. [Crossref] [PubMed]
- Ng HP, Chen FG, Yeong SM, Wong E, Chew P. Effect of remifentanil compared with fentanyl on intraocular pressure after succinylcholine and tracheal intubation. Br J Anaesth. 2000;85(5):785-7. [Crossref] [PubMed]
- McLoughlin C, Elliott P, McCarthy G, Mirakhur RK. Muscle pains and biochemical changes following suxamethonium administration after six pretreatment regimens. Anaesthesia. 1992;47(3):202-6. [Crossref] [PubMed]
- Ferres CJ, Mirakhur RK, Craig HJL, Browne ES, Clarke Rsj. Pretreatment with vecuronium as a prophylactic against post-suxamethonium muscle pain. British Journal of Anaesthesia 1983; 55: 735-41. [Crossref] [PubMed]
- Gropper M.A, Cohen NH, Eriksson LI, Fleisher LA, Leslie K, Wiener_Kronish JP, eds Erdem AF, Işık B, çeviri editörleri. Miller Anestezi Cilt 1: Nöromusküler Bloker İlaçların Farmakolojisi. 9. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2022:792-831. [Link]
- Clancy M, Halford S, Walls R, Murphy M. In patients with head injuries who undergo rapid sequence intubation using succinylcholine, does pretreatment with a competitive neuromuscular blocking agent improve outcome? A literature review. Emerg Med J. 2001;18(5):373-375. [Crossref] [PubMed] [PMC]
- Leary NP, Ellis FR. Masseteric muscle spasm as a normal response to Suxamethonium. Br J Anaesth. 1990; 64: 488- 92. [Crossref] [PubMed]
- Dorze ML, Plaud B, Mebazaa A. A case series of life-threatening succinylcholine-induced anaphylaxis. Eur J Anaesthesiol. 2017;34(8):563-566. [Crossref] [PubMed] [PMC]
- Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93. [Crossref] [PubMed] [PMC]
- Donati F, Meistelman C. A kinetic-dynamic model to explain the relationship between high potency and slow onset time for neuromuscular blocking drugs. J Pharmacokinet Biopharm. 1991;19(5):537-52. [Crossref] [PubMed]
- Combes X, Andriamifidy L, Dufresne E, Suen P, Sauvat S, Scherrer E, et. al. Comparison of two induction regimens using or not using muscle relaxant: impact on postoperative upper airway discomfort. Br J Anaesth. 2007;99(2):276-81. [Crossref] [PubMed]
- Chen BB, Nyhan DP, Blanck TJ. Hemodynamic effects and onset time of increasing doses of vecuronium in patients undergoing myocardial revascularization. J Cardiothorac Vasc Anesth. 1991;5(6):569-73. [Crossref] [PubMed]
- C Meistelman C., Plaud B, Donati F. Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can J Anaesth. 1992;39(7):665-9. [Crossref] [PubMed]
- Ahlström S, Bergman P, Jokela R, Ottensmann L, Ahola-Olli A, Pirinen M, et. al. First genome-wide association study on rocuronium dose requirements shows association with SLCO1A2. Br J Anaesth. 2021;126(5):949-957. [Crossref] [PubMed] [PMC]
- Ostergaard D, Jensen FS, Viby-Mogensen J. Reversal of intense mivacurium block with human plasma cholinesterase in patients with atypical plasma cholinesterase. Anesthesiology. 1995;82(5):1295-8. [Crossref] [PubMed]
- Naguib M, Daoud W, el-Gammal M, Ammar A, Turkistani A, Selim M, et. al. Enzymatic antagonism of mivacurium-induced neuromuscular blockade by human plasma cholinesterase. Anesthesiology. 1995;83(4):694-701. [Crossref] [PubMed]
- Todd DB. Histamine release by neuromuscular blocking agents. Br J Anaesth. 1996;76(3):471. [Crossref] [PubMed]
- Naguib M, Samarkandi AH, Bakhamees HS, Magboul MA, el-Bakry AK. Histamine-release haemodynamic changes produced by rocuronium, vecuronium, mivacurium, atracurium and tubocurarine. Br J Anaesth. 1995;75(5):588-92. [Crossref] [PubMed]
- Han T-H, Martyn J. Neuromuscular pharmacodynamics of mivacurium in adults with major burns. Br J Anaesth. 2011;106(5):675-679. [Crossref] [PubMed] [PMC]
- Butterworth JF, Mackey DC, Wasnick JD, eds Işık B, Erel S, çeviri editörleri. Morgan & Mikhail Klinik Anesteziyoloji: Kolinesteraz İnhibitörleri ve Diğer Farmakolojik Nöromüsküler Ajanların Antagonistleri. 7. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2024:217-227. [Link]
- Gropper MA, Cohen NH, Eriksson LI, Fleisher LA, Leslie K, Wiener-Kronish JP, eds Erdem AF, Işık B, çeviri editörleri. Miller Anestezi Cilt 1: Nöromüsküler Blokajın Geri Döndürülmesi. 9. Baskı. Ankara: Ayrıntı Basım Yayın ve Matbaacılık Hiz. San. Tic. A.Ş.; 2022. p.832-864. [Link]
- Cammu G, De Witte J, De Veylder J, Byttebier G, Vandeput D, Foubert L, et al Postoperative residual paralysis in outpatients versus inpatients. Anesth Analg. 2006;102(2):426-429. [Crossref] [PubMed]
- Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001;56(4):312-8. [Crossref] [PubMed]
- Brull SJ, Murphy GS. Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg. 2010;111(1):129-40. [Crossref] [PubMed]
- Murphy GS, Szokol JW, Marymont JH, Greenberg SB, Avram MJ, Vender JS. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg. 2008;107(1):130-7. [Crossref] [PubMed]
- Fortier LP, McKeen D, Turner K, de Médicis É, Warriner B, Jones PM, et.al. The RECITE Study: A Canadian Prospective, Multicenter Study of the Incidence and Severity of Residual Neuromuscular Blockade. Anesth Analg. 2015;121(2):366-72. [Crossref] [PubMed]
- Butterly A, Bittner EA, George E, Sandberg WS, Eikermann M, Schmidt U. Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge. Br J Anaesth. 2010;105(3):304-9. [Crossref] [PubMed]
- Bohringer C, Liu H. Is it always necessary to reverse the neuromuscular blockade at the end of surgery? J Biomed Res. 2019;33(4):217-220. [Crossref] [PMC]
- Fuchs-Buder T, Meistelman C, Alla F, Grandjean A, Wuthrich Y, Donati F. Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine. Anesthesiology. 2010;112(1):34-40. [Crossref] [PubMed]
- Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br J Anaesth. 2007;98(3):302-16. [Crossref] [PubMed]
- Caldwell JE. Clinical limitations of acetylcholinesterase antagonists. J Crit Care. 2009;24(1):21-8. Epub 2009 Jan 17. [Crossref] [PubMed]
- Lee LA, AthanassoglouV, Pandit JJ. Neuromuscular blockade in the elderly patient. J Pain Res. 2016; 9:437-444. [Crossref] [PubMed] [PMC]
- Cheng CR, Sessler DI, Apfel CC. Does neostigmine administration produce a clinically important increase in postoperative nausea and vomiting? Anesth Analg. 2005;101(5):1349-1355. [Crossref] [PubMed] [PMC]
- Sun KO. Bronchospasm after esmolol and neostigmine. Anaesth Intensive Care 1993;21:457-459. [Crossref] [PubMed]
- Stäuble CG, Blobner M. The future of neuromuscular blocking agents. Curr Opin Anaesthesiol. 2020;33(4):490-498. [Crossref] [PubMed]
- Bom A, Bradley M, Cameron K, Clark JK, Egmond VJ, Feilden H, et.al. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem Int Ed Engl. 2002;41(2):266-70. [PubMed]
- Olesnicky BL, Trumper R, Chen V, Culwick MD. The use of sugammadex in critical events in anaesthesia: A retrospective review of the webAIRS database. Anaesth Intensive Care. 2022;50(3):220-226. Epub 2022 Feb 17. [Crossref] [PubMed]
- Magoon R, Kashav R, Kohli JK. Sugammadex in end-stage renal disease: too early for a "free-pass". Can J Anaesth. 2021;68(2):264-265. [Crossref] [PubMed]
- Kim YS, Lim BG, Won YJ, Oh SK, Oh JS, Cho SA. Efficacy and Safety of Sugammadex for the Reversal of Rocuronium-Induced Neuromuscular Blockade in Patients with End-Stage Renal Disease: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2021;57(11):1259. [Crossref] [PubMed] [PMC]