NEUROPHYSIOLOGY
Burak Nalbant
Ankara Yıldırım Beyazıt University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Ankara, Türkiye
Nalbant B. Neurophysiology. In: Kazancı D, editor. Anesthesiology Fast Review. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.23-34.
ABSTRACT
- Understanding neurophysiological processes during anesthesia is crucial for preventing cerebral complications and ensuring patient safety.
- The increasing elderly population and the high prevalence of cerebral diseases in the perioperative period underscore the critical role of neurophysiological knowledge in anesthesia practice.
- The circle of Willis ensures cerebral blood flow by distributing blood through its vascular network; cerebrospinal fluid (CSF) provides mechanical protection, metabolic support, and chemical homeostasis; and the blood-brain barrier (BBB) regulates selective permeability to protect the brain from harmful substances.
- The brain consumes 20% of the body’s oxygen supply, with glucose as its primary energy source. Even a brief interruption (3–5 minutes) of cerebral blood flow can lead to irreversible cellular damage.
- Cerebral blood flow (CBF) is regulated according to metabolic demands and maintained through autoregulatory mechanisms. However, factors such as hypertension, hypocapnia, and anesthetic agents can impair this regulation.
- Intracranial pressure (ICP) is determined by the balance among brain tissue, blood, and CSF; an increase in ICP can result in brain herniation, a life-threatening condition. Cerebral ischemia occurs due to reduced cerebral perfusion and leads to neuronal cell death.
- Energy depletion, excitotoxicity, tissue acidosis, and neuroinflammation are key contributors to ischemic brain injury.
- The primary neuroprotective strategies include optimizing cerebral perfusion, reducing metabolic demand, and preventing secondary injury. Hypothermia, glycemic control, and seizure prophylaxis are among the most effective protective interventions.
- Barbiturates, propofol, and volatile anesthetics may exert neuroprotective effects by reducing cerebral metabolic rate and oxygen consumption.
- The maintenance and precise management of physiological parameters are more critical than the choice of anesthetic agent in ensuring optimal patient outcomes.
Keywords: Neurophysiology; Cerebrovascular circulation; Hypoxia-ischemia; Brain
×
Kaynak Göster
Referanslar
- Hartkamp MJ, van Der Grond J, van Everdingen KJ, Hillen B, Mali WP. Circle of Willis collateral flow investigated by magnetic resonance angiography. Stroke. Dec 1999;30(12):2671-8. [Crossref] [PubMed]
- Beards SC, Yule S, Kassner A, Jackson A. Anatomical variation of cerebral venous drainage: the theoretical effect on jugular bulb blood samples. Anaesthesia. Jul 1998;53(7):627-33. [Crossref] [PubMed]
- Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. Mar 2021;78(6):2429-2457. [Crossref] [PubMed] [PMC]
- Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. Nov 18 2020;17(1):69. [Crossref] [PubMed] [PMC]
- Chih CP, Roberts EL, Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab. Nov 2003;23(11):1263-81. [Crossref] [PubMed]
- Claassen J, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. Oct 1 2021;101(4):1487-1559. [Crossref] [PubMed] [PMC]
- Slupe AM, Kirsch JR. Effects of anesthesia on cerebral blood flow, metabolism, and neuroprotection. J Cereb Blood Flow Metab. Dec 2018;38(12):2192-2208. [Crossref] [PubMed] [PMC]
- Tan CO. Defining the characteristic relationship between arterial pressure and cerebral flow. J Appl Physiol (1985). Oct 15 2012;113(8):1194-200. [Crossref] [PubMed] [PMC]
- Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. Mar 1 2014;592(5):841-59. [Crossref] [PubMed] [PMC]
- Rickards CA. Cerebral Blood-Flow Regulation During Hemorrhage. Compr Physiol. Sep 20 2015;5(4):1585-621. [Crossref] [PubMed]
- Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. Feb 21 2002;346(8):557-63. [Crossref] [PubMed]
- Hindman BJ, Todd MM, Gelb AW, et al. Mild hypothermia as a protective therapy during intracranial aneurysm surgery: a randomized prospective pilot trial. Neurosurgery. Jan 1999;44(1):23-32; discussion 32-3. [Crossref] [PubMed]
- Hypothermia after Cardiac Arrest Study G. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. Feb 21 2002;346(8):549-56. [Crossref] [PubMed]
- Hoiland RL, Bain AR, Rieger MG, Bailey DM, Ainslie PN. Hypoxemia, oxygen content, and the regulation of cerebral blood flow. Am J Physiol Regul Integr Comp Physiol. Mar 1 2016;310(5):R398-413. [Crossref] [PubMed] [PMC]
- Gupta MM, Bithal PK, Dash HH, Chaturvedi A, Mahajan RP. Effects of stellate ganglion block on cerebral haemodynamics as assessed by transcranial Doppler ultrasonography. Br J Anaesth. Nov 2005;95(5):669-73. [Crossref] [PubMed]
- Branston NM. The physiology of the cerebrovascular parasympathetic innervation. Br J Neurosurg. 1995;9(3):319-29. [Crossref] [PubMed]
- Nemoto EM, Klementavicius R, Melick JA, Yonas H. Norepinephrine activation of basal cerebral metabolic rate for oxygen (CMRO2) during hypothermia in rats. Anesth Analg. Dec 1996;83(6):1262-7. [Crossref] [PubMed]
- Phillips AA, Warburton DE, Ainslie PN, Krassioukov AV. Regional neurovascular coupling and cognitive performance in those with low blood pressure secondary to high-level spinal cord injury: improved by alpha-1 agonist midodrine hydrochloride. J Cereb Blood Flow Metab. May 2014;34(5):794-801. [Crossref] [PubMed] [PMC]
- Joseph M, Ziadi S, Nates J, Dannenbaum M, Malkoff M. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. Nov 2003;53(5):1044-51; discussion 1051-2. [Crossref] [PubMed]
- Farag E, Kot M, Podolyak A, et al. The relative effects of dexmedetomidine and propofol on cerebral blood flow velocity and regional brain oxygenation: A randomised noninferiority trial. Eur J Anaesthesiol. Nov 2017;34(11):732-739. [Crossref] [PubMed]
- Zornow MH, Maze M, Dyck JB, Shafer SL. Dexmedetomidine decreases cerebral blood flow velocity in humans. J Cereb Blood Flow Metab. Mar 1993;13(2):350-3. [Crossref] [PubMed]
- Schroeder T, Schierbeck J, Howardy P, Knudsen L, Skafte-Holm P, Gefke K. Effect of labetalol on cerebral blood flow and middle cerebral arterial flow velocity in healthy volunteers. Neurol Res. Mar 1991;13(1):10-2. [Crossref] [PubMed]
- Madsen PL, Vorstrup S, Schmidt JF, Paulson OB. Effect of acute and prolonged treatment with propranolol on cerebral blood flow and cerebral oxygen metabolism in healthy volunteers. Eur J Clin Pharmacol. 1990;39(3):295-7. [Crossref] [PubMed]
- Bandres J, Yao L, Nemoto EM, Yonas H, Darby J. Effects of dobutamine and dopamine on whole brain blood flow and metabolism in unanesthetized monkeys. J Neurosurg Anesthesiol. Oct 1992;4(4):250-6. [Crossref] [PubMed]
- Prielipp RC, Wall MH, Groban L, et al. Reduced regional and global cerebral blood flow during fenoldopam-induced hypotension in volunteers. Anesth Analg. Jul 2001;93(1):45-52. [Crossref] [PubMed]
- Abe K, Iwanaga H, Shimada Y, Yoshiya I. The effect of nicardipine on carotid blood flow velocity, local cerebral blood flow, and carbon dioxide reactivity during cerebral aneurysm surgery. Anesth Analg. Jun 1993;76(6):1227-33. [Crossref]
- Kawaguchi M, Furuya H, Kurehara K, Yamada M. Effects of nicardipine on cerebral vascular responses to hypocapnia and blood flow velocity in the middle cerebral artery. Stroke. Sep 1991;22(9):1170-2. [Crossref] [PubMed]
- Sigurdsson ST, Paulson OB, Hoj Nielsen A, Strandgaard S. Bradykinin antagonist counteracts the acute effect of both angiotensin-converting enzyme inhibition and of angiotensin receptor blockade on the lower limit of autoregulation of cerebral blood flow. J Cereb Blood Flow Metab. Mar 2014;34(3):467-71. [Crossref] [PubMed] [PMC]
- Sare GM, Gray LJ, Bath PM. Effect of antihypertensive agents on cerebral blood flow and flow velocity in acute ischaemic stroke: systematic review of controlled studies. J Hypertens. Jun 2008;26(6):1058-64. [Crossref] [PubMed]
- Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. Jul 1995;83(1):66-76. [Crossref] [PubMed]
- Vandesteene A, Trempont V, Engelman E, et al. Effect of propofol on cerebral blood flow and metabolism in man. Anaesthesia. Mar 1988;43 Suppl:42-3. [Crossref] [PubMed]
- Veselis RA, Reinsel RA, Feshchenko VA, Wronski M. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology. Oct 1997;87(4):749-64. [Crossref] [PubMed]
- Cavazzuti M, Porro CA, Biral GP, Benassi C, Barbieri GC. Ketamine effects on local cerebral blood flow and metabolism in the rat. J Cereb Blood Flow Metab. Dec 1987;7(6):806-11. [Crossref] [PubMed]
- Holcomb HH, Lahti AC, Medoff DR, Weiler M, Tamminga CA. Sequential regional cerebral blood flow brain scans using PET with H2(15)O demonstrate ketamine actions in CNS dynamically. Neuropsychopharmacology. Aug 2001;25(2):165-72. [Crossref] [PubMed]
- Zeiler FA, Sader N, Gillman LM, Teitelbaum J, West M, Kazina CJ. The Cerebrovascular Response to Ketamine: A Systematic Review of the Animal and Human Literature. J Neurosurg Anesthesiol. Apr 2016;28(2):123-40. [Crossref] [PubMed]
- Michenfelder JD, Sundt TM, Fode N, Sharbrough FW. Isoflurane when compared to enflurane and halothane decreases the frequency of cerebral ischemia during carotid endarterectomy. Anesthesiology. Sep 1987;67(3):336-40. [Crossref] [PubMed]
- Kaisti KK, Metsahonkala L, Teras M, et al. Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology. Jun 2002;96(6):1358-70. [Crossref] [PubMed]
- Kuroda Y, Murakami M, Tsuruta J, Murakawa T, Sakabe T. Blood flow velocity of middle cerebral artery during prolonged anesthesia with halothane, isoflurane, and sevoflurane in humans. Anesthesiology. Sep 1997;87(3):527-32. [Crossref] [PubMed]
- Lavinio A, Menon DK. Intracranial pressure: why we monitor it, how to monitor it, what to do with the number and what's the future? Curr Opin Anaesthesiol. Apr 2011;24(2):117-23. [Crossref] [PubMed]
- Benson JC, Madhavan AA, Cutsforth-Gregory JK, Johnson DR, Carr CM. The Monro-Kellie Doctrine: A Review and Call for Revision. AJNR Am J Neuroradiol. Jan 2023;44(1):2-6. [Crossref] [PubMed] [PMC]
- Riveros Gilardi B, Munoz Lopez JI, Hernandez Villegas AC, et al. Types of Cerebral Herniation and Their Imaging Features. Radiographics. Oct 2019;39(6):1598-1610. [Crossref] [PubMed]
- Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. Dec 2019;50(12):e344-e418. [Crossref]
- Kammersgaard LP, Rasmussen BH, Jorgensen HS, Reith J, Weber U, Olsen TS. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: A case-control study: the Copenhagen Stroke Study. Stroke. Sep 2000;31(9):2251-6. [Crossref] [PubMed]
- Maekawa T, Tommasino C, Shapiro HM, Keifer-Goodman J, Kohlenberger RW. Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology. Aug 1986;65(2):144-51. [Crossref] [PubMed]
- Michenfelder JD, Milde JH. Influence of anesthetics on metabolic, functional and pathological responses to regional cerebral ischemia. Stroke. Jul-Aug 1975;6(4):405-10. [Crossref] [PubMed]
- Astrup J, Rosenorn J, Cold GE, Bendtsen A, Moller Sorensen P. Minimum cerebral blood flow and metabolism during craniotomy. Effect of thiopental loading. Acta Anaesthesiol Scand. Oct 1984;28(5):478-81. [Crossref] [PubMed]
- Bombardieri AM, Sharrock NE, Ma Y, Go G, Drummond JC. An Observational Study of Cerebral Blood Flow Velocity During Hypotensive Epidural Anesthesia. Anesth Analg. Jan 2016;122(1):226-33. [Crossref] [PubMed]
- Cold GE, Eskesen V, Eriksen H, Amtoft O, Madsen JB. CBF and CMRO2 during continuous etomidate infusion supplemented with N2O and fentanyl in patients with supratentorial cerebral tumour. A dose-response study. Acta Anaesthesiol Scand. Jul 1985;29(5):490-4. [Crossref] [PubMed]
- Drummond JC. Baseline Cerebral Metabolic Rate Is a Critical Determinant of the Cerebral Vasodilating Potency of Volatile Anesthetic Agents. Anesthesiology. Jul 2018;129(1):187-189. [Crossref] [PubMed]