New Approaches to Anti-Inflammatory Therapy: Nanotechnology Applications

biyomedikalozel5-1-24kapak

Sakine TUNCAY TANRIVERDİa, Özgen ÖZERa
aEge University Faculty of Pharmacy, Department of Pharmaceutical Technology, İzmir, Türkiye

Tuncay Tanrıverdi S, Özer Ö. New approaches to anti-inflammatory therapy: Nanotechnology applications. In: Koçdor H, Pabuççuoğlu A, Zihnioğlu F, eds. Inflammation and in vitro Diagnostics. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.56-65.

Article Language: EN

ABSTRACT
Currently, therapeutic strategies used in anti-inflammatory therapy may not be sufficient to achieve optimal pharmacological activity. For this reason, nanotechnology applications in treatment have been under focus. The biologically compatible nanocarriers should have the appropriate shape, size, and surface charge, and must be loaded with active substance at the appropriate concentration. These nanoparticles allow the controlled drug release, can be aimed to target the disease site, reduce toxicity, and side effects without damaging the surrounding cells and tissues. Among nanotechnology applications, lipidic systems (liposomes) and polymeric systems (nanoparticles) are mostly used. Many active substances are loaded into liposomes and features such as high stability, high loading capacity, active in the inflamed area are obtained. In addition, studies are carried out on the delivery of biotherapeutic large-molecule substances such as nucleic acids, peptides, and proteins in nanoparticle carrier systems. While there are many liposome formulations on the market with clinical research, there are few nanoparticular systems whose clinical studies have been completed due to biocompatibility problems, nanotoxicity and scale-up costs. Studies are ongoing to solve the clinical and industry challenges related to these systems.

Keywords: Anti-inflammatory; inflammation; nanoparticle; liposome; nanotechnology

Referanslar

  1. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol. Cell. 2014;54:281-8. [Crossref]  [PubMed]  [PMC]
  2. Xiao TS. Innate immunity and inflammation. Cell. Mol. Immunol. 2017;14:1-3. [Crossref]  [PubMed]  [PMC]
  3. Hotamisligil GS. Endoplasmic reticulumstress and the inflammatory basis of metabolic disease. Cell. 2010;14:900-17. [Crossref]  [PubMed]  [PMC]
  4. Niu Y, Bai N, Ma Y, Zhong PY, Shang YS, Wang ZL. Safety and efficacy of anti-inflammatory therapy in patients with coronary artery disease: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2022;22:84. [Crossref]  [PubMed]  [PMC]
  5. Navarro-Partida J, Altamirano-Vallejo JC, Aceves Franco LA, Gonzalez-Cortes J, Hernandez-Da Mota S, García-Aguirre JG, et al. Topical Triamcinolone Acetonide-Loaded Liposome Formulation Used as an Adjuvant to Intravitreal Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration. Pharmaceutics. 2021;13(9):1491. [Crossref]  [PubMed]  [PMC]
  6. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 2007;147:227-35. [Crossref]  [PubMed]  [PMC]
  7. McMasters J, Poh S, Lin JB, Panitch A. Delivery of anti-inflammatory peptides from hollow PEGylated poly (NIPAM) nanoparticles reduces inflammation in an ex vivo osteoarthritis model. J. Control Release. 2017;258:161-70. [Crossref]  [PubMed]  [PMC]
  8. Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, et al. TRAILexpressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J. Control Release. 2020b;320:304-13. [Crossref]  [PubMed]
  9. Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, et al. Hydrogenrich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-kB pathway and NLRP3 inflammasome. Mol. Neurobiol. 2016;53:3462-76. [Crossref]  [PubMed]
  10. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: role of the immune response in ischemic stroke. Front. Immunol. 2020;11:294. [Crossref]  [PubMed]  [PMC]
  11. Alves PL, Oliveira KS, Paixão Santos JA, Silva Leite JM, Rocha BP, Nogueira PL, et al. A review on developments and prospects of anti-inflammatory in microemulsions, Journal of Drug Delivery Science and Technology. 2020, 60:102008. [Crossref]
  12. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. [Crossref]  [PubMed]  [PMC]
  13. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules. 2016; 21(7):836. [Crossref]  [PubMed]  [PMC]
  14. Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efcient delivery and safety concern. Nanomedicine. 2017;12:357-85. [Crossref]  [PubMed]
  15. Brusini, R, Varna, M, Couvreur, P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161-78. [Crossref]  [PubMed]  [PMC]
  16. Duncan GA, Bevan MA. Computational design of nanoparticle drug delivery systems for selective targeting, Nanoscale. 2015;7:15332-40. [Crossref]  [PubMed]
  17. Wang Y, Rajala A, Rajala RVS. Lipid Nanoparticles for Ocular Gene Delivery. J. Funct. Biomater. 2015;6:379-94. [Crossref]  [PubMed]  [PMC]
  18. Tanrıverdi ST, Özer O. Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis, European Journal of Pharmaceutical Sciences. 2013;48(4-5):628-36. [Crossref]  [PubMed]
  19. Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010;17:467-89. [Crossref]  [PubMed]
  20. Toita R, Kawano T, Murat M, Kang JH. Anti-obesity and anti-inflammatory effects of macrophage-targeted interleukin-10-conjugated liposomes in obese mice, Biomaterials. 2016;110:81-8. [Crossref]  [PubMed]
  21. van Alem CMA, Boonstra M, Prins J, Bezhaeva T, van Essen MF, Ruben JM, et al. Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia-reperfusion injury in the rat, Nephrol. Dial. Transplant. 2018; 33:44-53. [Crossref]  [PubMed]
  22. Sağıroğlu A., Özsoy Y., Özer Ö. Design, optimization and characterization of novel topical formulations containing Triamcinolone Acetonide, Journal of Drug Delivery Science and Technology. 2020; 58:101594. [Crossref]
  23. Suh JH, Joo HS, Hong EB, Lee HJ, Lee JM. Therapeutic Application of Exosomes in Inflammatory Diseases. Int J Mol Sci. 2021; 22(3):1144. [Crossref]  [PubMed]  [PMC]
  24. Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact. 2020;100261. [Crossref]
  25. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A novel nanoparticle drug delivery system: The anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol. Ther. 2010;18:1606-14. [Crossref]  [PubMed]  [PMC]
  26. Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, et al. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis. 2020;11:409. [Crossref]  [PubMed]  [PMC]
  27. Albanesi C, Pastore S. Pathobiology of chronic inflammatory skin diseases: Interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Curr Drug Metab. 2010;11:210-27. [Crossref]  [PubMed]
  28. Alvarez-Trabado J, Diebold Y, Sanchez A. Designing lipid nanoparticles for topical ocular drug delivery. Int. J. Pharm. 2017;532:204-17. [Crossref]  [PubMed]
  29. Battaglia L, Serpe L, Foglietta F, Muntoni E, Gallarate M, Del Pozo Rodriguez A, et al. Application of lipid nanoparticles to ocular drug delivery. Expert Opin. Drug Deliv. 2016;13:1743-57. [Crossref]  [PubMed]
  30. Ana RD, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-Based Nanoparticulate Systems for the Ocular Delivery of Bioactives with Anti-Inflammatory Properties. Int. J. Mol. Sci. 2022;23:12102. [Crossref]  [PubMed]  [PMC]
  31. Dianzani C, Foglietta F, Ferrara B, Rosa AC, Muntoni E, Gasco P, et al. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: effects in an in vivo model, World J. Gastroenterol. 2017; 23:4200-10. [Crossref]  [PubMed]  [PMC]
  32. Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acidcoated solid lipid nanoparticles for rheumatoid arthritis therapy, Drug Deliv. 2018;25:716-22. [Crossref]  [PubMed]  [PMC]
  33. Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, et al. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity, International Journal of Pharmaceutics. 2008;364(1):76-86. [Crossref]  [PubMed]
  34. Yeo PL, Lim CL, Chye SM, Kiong Ling AP, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomedicine. 2017;11(4):301-14. [Crossref]
  35. Marianecci C, Rinaldi F, Mastriota M, Pieretti S, Trapasso E, Paolino D, et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J Control Release. 2012;164:17-25. [Crossref]  [PubMed]
  36. Leelarungrayub J, Manorsoi J, Manorsoi A. Anti-inflammatory activity of niosomes entrapped with Plai oil (Zingiber cassumunar Roxb.) by therapeutic ultrasound in a rat model. Int J Nanomedicine. 2017;12:2469-76. [Crossref]  [PubMed]  [PMC]
  37. Negi P, Aggarwal M, Sharma G, Rathore C, Sharma G, Singh B, et al. Niosome-based hydrogel of resveratrol for topical applications: an effective therapy for pain related disorder(s). Biomed Pharmacother. 2017;88:480-87. [Crossref]  [PubMed]
  38. El-Sayed MM, Hussein AK, Sarhan HA, Mansour HF. Flurbiprofenloaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor. Drug Dev Ind Pharm. 2017;43:902-10. [Crossref]  [PubMed]
  39. Shinde UA, Kanojiya SS. Serratiopeptidase niosomal gel with potential in topical delivery. J Pharm (Cario). 2014;2014:9. [Crossref]  [PubMed]  [PMC]
  40. Gaafar PM, Abdallah OY, Farid RM, Abdelkader H. Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone, J. Liposome Res. 2014;24:204-15. [Crossref]  [PubMed]
  41. Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Yadav R, et al. Flurbiprofen loaded ethosomes-Transdermal delivery of anti-inflammatory effect in rat model. Lipids Heal. Dis. 2019;18:1-15. [Crossref]  [PubMed]  [PMC]
  42. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release. 2015;106(1-2):99-110. [Crossref]  [PubMed]
  43. Mombeiny R, Tavakol S, Kazemi M, Mehdizadeh M, Hasanzadeh A, Karimi Babaahmadi M, et al. Anti-inflammatory ethosomal nanoformulation in combination with iontophoresis in chronic wound healing: An ex vivo study. IET Nanobiotechnol. 2021;15(9):710-8. [Crossref]  [PubMed]  [PMC]
  44. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics. 2020;12(9):855. [Crossref]  [PubMed]  [PMC]
  45. Rother M, Lavins BJ, Kneer W, Lehnhardt K, Seidel EJ, Mazgareanu S. Eficacy and safety of epicutaneous ketoprofen in Transfersome (IDEA-033) versus oral celecoxib and placebo in osteoarthritis of the knee: Multicentre randomised controlled trial. Ann. Rheum. Dis. 2007;66:1178-83. [Crossref]  [PubMed]  [PMC]
  46. Fesq H, Lehmann J, Kontny A, Erdmann I, Theiling K, Rother M, et al. Improved risk-benefit ratio for topical triamcinolone acetonide in Transfersome in comparison with equipotent cream and ointment: A randomized controlled trial. Brit. J. Dermatol. 2003;149:611-9. [Crossref]  [PubMed]
  47. Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv. 2022;29(1):1934-50. [Crossref]  [PubMed]  [PMC]
  48. Pineros I, Slowing K, Serrano DR, de Pablo E, Ballesteros MP. Analgesic and anti-inflammatory controlled-released injectable microemulsion: pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation, Eur. J. Pharmaceut. Sci. 2017;101:220-7. [Crossref]  [PubMed]
  49. Shaker DS, Ishak RAH, Ghoneim A, Elhuoni MA. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019;87:17. [Crossref]
  50. Zhang Y, Gao J, Zheng H, Zhang R, Han Y. The preparation of 3,5-dihydroxy-4-isopropylstilbene nanoemulsion and in vitro release. Int. J. Nanomed. 2011; 6:649-57. [Crossref]  [PubMed]  [PMC]
  51. Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. Nat Rev Mater. 2022;7:796-813. [Crossref]  [PubMed]  [PMC]
  52. Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review, International Journal of Polymeric Materials and Polymeric Biomaterials. 2022;71(1):1-13. [Crossref]
  53. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel). 2020;10(7):1403. [Crossref]  [PubMed]  [PMC]
  54. Özcan I, Azizoğlu E, Senyiğit T, Özyazıcı M, Özer, Ö. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles: in-vitro and in-vivo evaluations. Int J Nanomedicine. 2013;8:461-75. [Crossref]  [PubMed]  [PMC]
  55. Gürcan S, Tsapis N, Reynaud F, Denis S, Vergnaud J, Özer Ö, Fattal E. Combining dexamethasone and TNF-α siRNA within the same nanoparticles to enhance anti-inflammatory effect. Int J Pharm. 2021;1;598:120381. [Crossref]  [PubMed]