New Generation Monofocal Intraocular Lenses in Cataract Surgery

oftalmoloji-17-1-kapak-wosonayiyok

Atılım Armağan DEMİRTAŞa,b

aUniversity of Health Sciences İzmir Faculty of Medicine, Tepecik Training and Research Hospital, Department of Ophthalmology, İzmir, Türkiye
bUniversity of Health Sciences Faculty of Medicine, İzmir Tepecik Training and Research Hospital, Department of Ophthalmology, İzmir, Türkiye

ABSTRACT
The evolution of the new generation monofocal introcular lenses continues to shape the future of cataract surgery. Advancements in optical design, materials, and surgical techniques have resulted in improved visual outcomes and patient satisfaction. The primary goals of new generation monofocal intraocular lens design are to decrease posterior capsule opacification rates, to avoid spherical aberrations, and to minimize the harmful effects of ultraviolet rays on the retina. Three important elements worth mentioning here are spherical aberration profiles, optic edge designs, and blue-blocking filters. As technology continues to develop, further studies and innovations are expected to refine these intraocular lenses and offer even more tailored solutions for patients undergoing cataract surgery.
Keywords: Lenses, intraocular; corneal wavefront aberration; new generation monofocal IOL; spheric aberration profile; optic edge design; blue-blocking filter

Referanslar

  1. Yılmaz ÖF, Koç AA, Urvasızoğlu S. Katarakt cerrahisi: Dünü, bugünü, geleceği. Küçümen RB, editör. Zor ve Özellikli Olgularda Katarakt Cerrahisi. 1. Baskı. Ankara: Türkiye Klinikleri; 2021. p.1-5.
  2. Randleman JB, Perez-Straziota C. A Brief History of the Intraocular Lenses. In: Randleman JB, Ahmed IIK, eds. Intraocular Lens Surgery: Selection, Complications, and Complex Cases. 1st ed. Stuttgart: Thieme; 2016. p.2-9. [Crossref]
  3. Werner L. Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol. 2008;19(1):41-9. [Crossref]  [PubMed]
  4. Randleman JB, Lockwood JC. Intraocular Lens Designs and Materials. In: Randleman JB, Ahmed IIK, eds. Intraocular Lens Surgery: Selection, Complications, and Complex Cases. 1st ed. Stuttgart: Thieme; 2016. p.10-17. [Crossref]
  5. Łabuz G, Knebel D, Auffarth GU, Fang H, van den Berg TJ, Yildirim TM, et al. Glistening Formation and Light Scattering in Six Hydrophobic-Acrylic Intraocular Lenses. Am J Ophthalmol. 2018;196:112-20. [Crossref]  [PubMed]
  6. Hayashi K, Hirata A, Yoshida M, Yoshimura K, Hayashi H. Long-term effect of surface light scattering and glistenings of intraocular lenses on visual function. Am J Ophthalmol. 2012;152(2):240-51.e2. [Crossref]  [PubMed]
  7. Lehmann R, Maxwell A, Lubeck DM, Fong R, Walters TR, Fakadej A. Effectiveness and Safety of the Clareon Monofocal Intraocular Lens: Outcomes from a 12-Month Single-Arm Clinical Study in a Large Sample. Clin Ophthalmol. 2021;15:1647-57. [Crossref]  [PubMed]  [PMC]
  8. Oshika T, Fujita Y, Inamura M, Miyata K. Mid-term and long-term clinical assessments of a new 1-piece hydrophobic acrylic IOL with hydroxyethylmethacrylate. J Cataract Refract Surg. 2020;46(5):682-87. [Crossref]  [PubMed]
  9. Werner L, Thatthamla I, Ong M, Schatz H, Garcia-Gonzalez M, Gros-Otero J, et al. Evaluation of clarity characteristics in a new hydrophobic acrylic IOL in comparison to commercially available IOLs. J Cataract Refract Surg. 2019;45(10):1490-7. [Crossref]  [PubMed]
  10. Brown DC, Ziémba SL; Collamer IOL FDA Study Group. Collamer intraocular lens: clinical results from the US FDA core study. J Cataract Refract Surg. 2001;27(6):833-40. [Crossref]  [PubMed]
  11. Britz L, Schickhardt SK, Yildirim TM, Auffarth GU, Lieberwirth I, Khoramnia R. Hydrophobe Oberflächeneigenschaften hydrophiler Acryllinsen schützen nicht vor Kalzifikation [Hydrophobic surface properties of hydrophilic acrylic lenses do not protect against calcification]. Ophthalmologie. 2023. German. [Crossref]  [PubMed]
  12. Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol. 2022;10:913383. [Crossref]  [PubMed]  [PMC]
  13. Wang R, Xia J, Tang J, Liu D, Zhu S, Wen S, et al. Surface Modification of Intraocular Lens with Hydrophilic Poly(Sulfobetaine Methacrylate) Brush for Posterior Capsular Opacification Prevention. J Ocul Pharmacol Ther. 2021;37(3):172-80. [Crossref]  [PubMed]
  14. Kang S, Choi JA, Joo CK. Comparison of posterior capsular opacification in heparin-surface-modified hydrophilic acrylic and hydrophobic acrylic intraocular lenses. Jpn J Ophthalmol. 2009;53(3):204-8. [Crossref]  [PubMed]
  15. Kang S, Kim MJ, Park SH, Joo CK. Comparison of clinical results between heparin surface modified hydrophilic acrylic and hydrophobic acrylic intraocular lens. Eur J Ophthalmol. 2008;18(3):377-83. [Crossref]  [PubMed]
  16. Li Y, Wang J, Chen Z, Tang X. Effect of hydrophobic acrylic versus hydrophilic acrylic intraocular lens on posterior capsule opacification: meta-analysis. PLoS One. 2013;8(11):e77864. [Crossref]  [PubMed]  [PMC]
  17. Li N, Chen X, Zhang J, Zhou Y, Yao X, Du L, et al. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification. Ophthalmology. 2008;115(5):830-8. [Crossref]  [PubMed]
  18. Cooksley G, Lacey J, Dymond MK, Sandeman S. Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics. 2021;13(6):860. [Crossref]  [PubMed]  [PMC]
  19. Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, et al. Eradication of posterior capsule opacification: documentation of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology. 2001;108(3):505-18. [Crossref]  [PubMed]
  20. Thom H, Ender F, Samavedam S, Perez Vivez C, Gupta S, Dhariwal M, et al. Effect of AcrySof versus other intraocular lens properties on the risk of Nd:YAG capsulotomy after cataract surgery: A systematic literature review and network meta-analysis. PLoS One. 2019;14(8):e0220498. [Crossref]  [PubMed]  [PMC]
  21. Leydolt C, Schartmüller D, Schwarzenbacher L, Schranz M, Schriefl S, Menapace R. Comparison of posterior capsule opacification development with 2 single-piece intraocular lens types. J Cataract Refract Surg. 2017;43(6):774-80. [Crossref]  [PubMed]
  22. Hillenmayer A, Wertheimer CM, Kassumeh S, von Studnitz A, Luft N, Ohlmann A, et al. Evaluation of posterior capsule opacification of the Alcon Clareon IOL vs the Alcon Acrysof IOL using a human capsular bag model. BMC Ophthalmol. 2020;20(1):77. [Crossref]  [PubMed]  [PMC]
  23. Norrby S, Piers P, Campbell C, van der Mooren M. Model eyes for evaluation of intraocular lenses. Appl Opt. 2007;46(26):6595-05. [Crossref]  [PubMed]
  24. Schuster AK, Tesarz J, Vossmerbaeumer U. The impact on vision of aspheric to spherical monofocal intraocular lenses in cataract surgery: a systematic review with meta-analysis. Ophthalmology. 2013;120(11):2166-75. [Crossref]  [PubMed]
  25. Montés-Micó R, Ferrer-Blasco T, Cerviño A. Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg. 2009;35(1):172-81. [Crossref]  [PubMed]
  26. Holladay JT, Piers PA, Koranyi G, van der Mooren M, Norrby NE. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002;18(6):683-91. [Crossref]  [PubMed]
  27. Wang L, Pitcher JD, Weikert MP, Koch DD. Custom selection of aspheric intraocular lenses after wavefront-guided myopic photorefractive keratectomy. J Cataract Refract Surg. 2010;36(1):73-81. [Crossref]
  28. Wang L, Shoukfeh O, Koch DD. Custom selection of aspheric intraocular lens in eyes with previous hyper opic corneal surgery. J Cataract Refract Surg. 2015;41:2652-63. [Crossref]  [PubMed]
  29. Schröder S, Eppig T, Liu W, Schrecker J, Langenbucher A. Keratoconic eyes with stable corneal tomography could benefit more from custom intraocular lens design than normal eyes. Sci Rep. 2019;9(1):3479. [Crossref]  [PubMed]  [PMC]
  30. Mutlu FM, Erdurman C, Sobaci G, Bayraktar MZ. Comparison of tilt and decentration of 1-piece and 3-piece hydrophobic acrylic intraocular lenses. J Cataract Refract Surg. 2005;31(2):343-7. [Crossref]  [PubMed]
  31. Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg. 2005;31(3):574-85. [Crossref]  [PubMed]
  32. Gillner M, Langenbucher A, Eppig T. Untersuchung der theoretischen Abbildungsqualität asphärischer Intraokularlinsen bei Dezentrierung. Hoya AF-1 iMics1 und Zeiss ASPHINA(TM) (Invent ZO) [Investigation of the theoretical image quality of aspheric intraocular lenses by decentration. Hoya AF-1 iMics1 und Zeiss ASPHINA(TM) (Invent ZO)]. Ophthalmologe. 2012;109(3):263-70. [Crossref]  [PubMed]
  33. Borkenstein AF, Borkenstein EM, Luedtke H, Schmid R. Impact of Decentration and Tilt on Spherical, Aberration Correcting, and Specific Aspherical Intraocular Lenses: An Optical Bench Analysis. Ophthalmic Res. 2022;65 (4):425-36. [Crossref]  [PubMed]
  34. Packer M, Fine IH, Hoffman RS. Aspheric intraocular lens selection based on corneal wavefront. J Refract Surg. 2009;25(1):12-20. [Crossref]  [PubMed]
  35. Jia LX, Li ZH. Clinical study of customized aspherical intraocular lens implants. Int J Ophthalmol. 2014;7(5):816-21.
  36. Kernt M, Neubauer AS, Liegl R, Eibl KH, Alge CS, Lackerbauer CA, et al. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression. J Cataract Refract Surg. 2009;35(2):354-62. [Crossref]  [PubMed]
  37. Meyers SM, Ostrovsky MA, Bonner RF. A model of spectral filtering to reduce photochemical damage in age-related macular degeneration. Trans Am Ophthalmol Soc. 2004;102:83-93.
  38. Turner PL, Mainster MA. Circadian photoreception: ageing and the eye's important role in systemic health. Br J Ophthalmol. 2008;92(11):1439-44. [Crossref]  [PubMed]  [PMC]
  39. Yang H, Afshari NA. The yellow intraocular lens and the natural ageing lens. Curr Opin Ophthalmol. 2014;25(1):40-3. [Crossref]  [PubMed]
  40. Cinar E, Bolu H, Erbakan G, Yuce B, Aslan F, Fece M, et al. Vision outcomes with a new monofocal IOL. Int Ophthalmol. 2021;41(2):491-8. [Crossref]  [PubMed]
  41. Borkenstein AF, Borkenstein EM, Schmid R. Analysis of a novel hydrophobic acrylic enhanced monofocal intraocular lens compared to its standard monofocal type on the optical bench. BMC Ophthalmol. 2022;22(1):356. [Crossref]  [PubMed]  [PMC]