NK-Cell Based Immunotherapies

Gülcan KÖKCÜa , Güldane CENGİZ SEVALa
aAnkara University Faculty of Medicine, Department of Hematology, Ankara, Türkiye

Kökcü G, Cengiz Seval G. NK-Cell based immunotherapies. Sunguroğlu A, ed. Current Approaches in Cancer Immunotherapy. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.39-47.

ABSTRACT
Natural killer (NK) cells are members of the innate immune system and play a significant role in tumor killing. Their function is defined by the balance between the inhibitory receptors and the activating receptors. Various NK cell sources are currently being used for adoptive cancer immunotherapy; they include autologous NK cells, umbilical cord blood (UBC), CD34+ hematopoietic progenitor cells (HPCs), induced pluripotent stem cells (iPSCs), and genetically engineered NK cells. Contrary to CAR-T cells, NK cells or CAR-NK cells from allogeneic sources provide a better safety profile because they do not cause graft-versus-host disease (GvHD), cytokine-released syndrome (CRS), or neurotoxicity. It provides a significant advantage in that it can be used off the shelf and without HLA compatibility. This review will provide an updated overview of NK cell-based immunotherapies.

Keywords: Natural killer (NK) cells; immunotherapy; chimeric antigen receptor (CAR)

Referanslar

  1. Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther. 2024; 9(1):302. [Crossref]  [PubMed]  [PMC]
  2. Kiessling R, Klein E, Wigzell H. "Natural" killer cells in the mouse. I.
  3. Di Santo JP, Vosshenrich CA. Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev. 2006; 214(1):35-46. [Crossref]
  4. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145-9.
  5. Cichocki F, Grzywacz B, Miller JS. Human NK cell development: one road or many? Front Immunol. 2019; 10:2078. [Crossref]  [PubMed]  [PMC]
  6. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity 2017; 47(5):820-33. [Crossref]  [PubMed]  [PMC]
  7. Björkström NK, Ljunggren H-G, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016;16(5):310-20. [Crossref]
  8. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9:1869. [Crossref]  [PubMed]  [PMC]
  9. Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J Immunol. 2004; 172(2):864-70. [Crossref]
  10. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009; 457(7229):557-61. [Crossref]  [PubMed]  [PMC]
  11. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012; 119(11):2665-74. [Crossref]  [PubMed]  [PMC]
  12. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461-9. [Crossref]  [PubMed]  [PMC]
  13. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001; 97(10):3146-51. [Crossref]
  14. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001; 22(11):633-40. [Crossref]
  15. Hashemi E, Malarkannan S. Tissue-resident NK cells: development, maturation, and clinical relevance. Cancers. 2020;12(6):1553. [Crossref]  [PubMed]  [PMC]
  16. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127(26):3341-9. [Crossref]
  17. Benichou G, Fedoseyeva E, Lehmann PV, Olson CA, Geysen HM, McMillan M, Sercarz EE. Limited T cell response to donor MHC peptides during allograft rejection. Implications for selective immune therapy in transplantation. J Immunol (Baltimore, Md: 1950) 1994; 153(3):938-45. [Crossref]
  18. Liu Z, Sun YK, Xi YP, Hong B, Harris PE, Reed EF, Suciu-Foca N. Limited usage of T cell receptor V beta genes by allopeptide-specific T cells. J Immunol. 1993;150(8 Pt 1):3180-6. [Crossref]
  19. Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J Immunol. 1998; 160(10):4951-60. [Crossref]
  20. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186(7):1129-36. [Crossref]  [PubMed]  [PMC]
  21. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190(10):1505-16. [Crossref]  [PubMed]  [PMC]
  22. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non–major histocompatibility complex–restricted tumor cell lysis. J Exp Med.1998; 187(12):2065-72. [Crossref]  [PubMed]  [PMC]
  23. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. science 1999; 285(5428):727-9. [Crossref]
  24. Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005; 436(7054):1186-90. [Crossref]  [PubMed]  [PMC]
  25. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019; 10:1179. [Crossref]  [PubMed]  [PMC]
  26. Elliott JM, Yokoyama WM. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 2011; 32(8):364-72. [Crossref]  [PubMed]  [PMC]
  27. Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol. 2006; 6(7):520-31. [Crossref]
  28. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nature reviews Drug discovery 2020; 19(3):200-18. [Crossref]
  29. Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol. 1987;105(3):1039-45. [Crossref]  [PubMed]  [PMC]
  30. Gray JD, Hirokawa M, Ohtsuka K, Horwitz DA. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-β: contrasting effects of anti-CD2 and anti-CD3. J Immunol. 1998; 160(5):2248-54. [Crossref]
  31. Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994; 180(5):1587-90. [Crossref]  [PubMed]  [PMC]
  32. Garcia‐Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003; 195(3):346-55. [Crossref]
  33. Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance. Adv Cancer Res. 2001;83:117-58. [Crossref]
  34. Ardolino M, Azimi CS, Iannello A, Trevino TN, Horan L, Zhang L, et al. Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest. 2014; 124(11):4781-94. [Crossref]  [PubMed]  [PMC]
  35. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999; 94(1):333-9. [Crossref]
  36. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295(5562):2097-100. [Crossref]
  37. Shin MH, Kim J, Lim SA, Kim J, Kim S-J, Lee K-M. NK cell-based immunotherapies in cancer. Immune Netw. 2020;20(2):e14. [Crossref]  [PubMed]  [PMC]
  38. Wagner JA, Berrien-Elliott MM, Rosario M, Leong JW, Jewell BA, Schappe T, et al. Cytokine-induced memory-like differentiation enhances unlicensed natural killer cell antileukemia and FcγRIIIa-triggered responses. Biol Blood Marrow Transplant. 2017; 23(3):398-404. [Crossref]  [PubMed]  [PMC]
  39. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 2004; 24(3B):1861-71.
  40. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 2011;17(19):6287-97. [Crossref]  [PubMed]  [PMC]
  41. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res. 2004; 10(11):3699-707. [Crossref]
  42. Jia L, Chen N, Chen X, Niu C, Liu Z, Ma K, et al. Sintilimab plus autologous NK cells as second-line treatment for advanced non-small-cell lung cancer previous treated with platinum-containing chemotherapy. Front Immunol. 2022; 13:1074906. [Crossref]  [PubMed]  [PMC]
  43. Choi MG, Son GW, Choi MY, Jung JS, Rho JK, Ji W, et al. Safety and efficacy of SNK01 (autologous natural killer cells) in combination with cytotoxic chemotherapy and/or cetuximab after failure of prior tyrosine kinase inhibitor in non-small cell lung cancer: non-clinical mouse model and phase I/IIa clinical study. J Immunother Cancer. 2024;12(3):e008585. [Crossref]  [PubMed]  [PMC]
  44. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105(8):3051-7. [Crossref]
  45. Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010; 28(6):955-9. [Crossref]  [PubMed]  [PMC]
  46. Bachanova V, Sarhan D, DeFor TE, Cooley S, Panoskaltsis-Mortari A, Blazar BR, et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother. 2018; 67:483-94. [Crossref]  [PubMed]  [PMC]
  47. Lim SA, Kim T-J, Lee JE, Sonn CH, Kim K, Kim J, et al. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy. Cancer Res. 2013; 73(8):2598-607.
  48. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PloS one. 2012; 7(1):e30264. [Crossref]  [PubMed]  [PMC]
  49. Hoogstad-van Evert J, Bekkers R, Ottevanger N, Schaap N, Hobo W, Jansen JH, et al. Intraperitoneal infusion of ex vivo-cultured allogeneic NK cells in recurrent ovarian carcinoma patients (a phase I study). Medicine. 2019; 98(5):e14290. [Crossref]  [PubMed]  [PMC]
  50. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155-62. [Crossref]  [PubMed]  [PMC]
  51. Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PloS one. 2013; 8(10):e76781. [Crossref]  [PubMed]  [PMC]
  52. Carlsten M, Childs RW. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front Immunol. 2015; 6:266. [Crossref]  [PubMed]  [PMC]
  53. Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. Springer; 2019. [Crossref]
  54. Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells. 2016; 34(1):93-101. [Crossref]  [PubMed]  [PMC]
  55. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24(9):1526-33. [Crossref]  [PubMed]  [PMC]
  56. Gong J-H, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994; 8(4):652-8.
  57. Mitwasi N, Feldmann A, Arndt C, Koristka S, Berndt N, Jureczek J, et al. “UniCAR”-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci. Rep. 2020; 10(1):2141. [Crossref]  [PubMed]  [PMC]
  58. Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, et al. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985;134(3):1623-30. [Crossref]
  59. Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, et al. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood.1998; 92(4):1374-83. [Crossref]
  60. Robertson M, Cochran K, Cameron C, Le J, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol. 1996; 24(3):406-15.
  61. Mahle NH, Radcliff G, Sevilla CL, Kornbluth J, Callewaert DM. Kinetics of cellular cytotoxicity mediated by a cloned human natural killer cell line. Immunobiology. 1989; 179(2-3):230-43. [Crossref]
  62. McNerney ME, Lee K-M, Kumar V. 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol Immunol. 2005; 42(4):489-94. [Crossref]
  63. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 2002; 3(12):1150-5. [Crossref]
  64. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol. 2018; 15(1):47-62. [Crossref]  [PubMed]  [PMC]
  65. Nieto Y, Banerjee P, Kaur I, Kim KH, Fang D, Thall PF, et al. Ex Vivo Expanded Cord Blood Natural Killer Cells Combined with Rituximab and High-Dose Chemotherapy and Autologous Stem Cell Transplantation for B Cell Non-Hodgkin Lymphoma. Transplant Cell Ther. 2024; 30(2):203. e201-203. e209. [Crossref]
  66. Mohseni R, Mahdavi Sharif P, Behfar M, Shojaei S, Shoae-Hassani A, Jafari L, et al. Phase I study of safety and efficacy of allogeneic natural killer cell therapy in relapsed/refractory neuroblastomas post autologous hematopoietic stem cell transplantation. Sci Rep. 2024; 14(1):20971. [Crossref]  [PubMed]  [PMC]
  67. Chen J, Hu J, Gu L, Ji F, Zhang F, Zhang M, et al. Anti-mesothelin CAR-T immunotherapy in patients with ovarian cancer. Cancer Immunol Immunother. 2023; 72(2):409-25. [Crossref]  [PubMed]  [PMC]
  68. Marin D, Li Y, Basar R, Rafei H, Daher M, Dou J, et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat Med. 2024; 30(3):772-84. [Crossref]  [PubMed]  [PMC]
  69. Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018; 8(6):1083.
  70. Ciurea SO, Kongtim P, Srour S, Chen J, Soebbing D, Shpall E, et al. Results of a phase I trial with Haploidentical mbIL‐21 ex vivo expanded NK cells for patients with multiply relapsed and refractory AML. Am J Hematol. 2024; 99(5):890-9. [Crossref]
  71. Xiao L, Cen D, Gan H, Sun Y, Huang N, Xiong H, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther. 2019; 27(6):1114-25. [Crossref]  [PubMed]  [PMC]
  72. Bachanova V, Ghobadi A, Patel K, Park JH, Flinn IW, Shah P, et al. Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-cell lymphoma. Blood. 2021; 138:823. [Crossref]
  73. Burger MC, Forster M-T, Romanski A, Straßheimer F, Macas J, Zeiner PS, et al. Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro Oncol. 2023; 25(11):2058-71. [Crossref]  [PubMed]  [PMC]
  74. Shah N, Mehta R, Li L, Mccarty J, Kaur I, Orlowski RZ, et al. Phase II study of ex vivo expanded cord blood natural killer cells for multiple myeloma. J Clin Oncol. 2018;36:8006-6. [Crossref]
  75. Piñeiro Fernández J, Luddy KA, Harmon C, O’Farrelly C. Hepatic tumor microenvironments and effects on NK cell phenotype and function. Int J Mol Sci. 2019; 20(17):4131. [Crossref]  [PubMed]  [PMC]
  76. Gonzalez-Gugel E, Saxena M, Bhardwaj N. Modulation of innate immunity in the tumor microenvironment. Cancer Immunol Immunother. 2016; 65:1261-8. [Crossref]  [PubMed]  [PMC]
  77. Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris J-H, Noman MZ, Chouaib S. Critical role of tumor microenvironment in shaping NK cell functions: implication of hypoxic stress. Front Immunol. 2015; 6:482. [Crossref]  [PubMed]  [PMC]
  78. Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019; 177(7):1701-13. e1716. [Crossref]
  79. Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, et al. Combining AFM13, a bispecific CD30/CD16 antibody, with cytokine-activated blood and cord blood–derived NK cells facilitates CAR-like responses against CD30+ malignancies. Clin Cancer Res. 2021; 27(13):3744-56. [Crossref]  [PubMed]  [PMC]
  80. Maskalenko NA, Zhigarev D, Campbell KS. Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov. 2022;21(8):559-77. [Crossref]  [PubMed]  [PMC]