NONINVASIVE GLUCOSE AND LACTATE MONITORIZATION

Emel Ulusoy1
Murat Duman2

1Dokuz Eylül University, Faculty of Medicine, Department of Pediatric Emergency, İzmir, Türkiye
2Dokuz Eylül University, Faculty of Medicine, Department of Pediatric Emergency, İzmir, Türkiye

Ulusoy E, Duman M. Noninvasive Glucose and Lactate Monitorization. In: Bal A, editor. Noninvasive Monitoring of Critically Ill Child. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.87-94.

ABSTRACT

In critical care, laboratory analyses play a crucial role in guiding the diagnosis and treatment process. These analyses may require repetition or even continuous monitoring, which can lead to an increase in invasive interventions. The development of non-invasive methods for analyses that require close mon- itoring, such as glucose and lactate, has the potential to reduce invasive procedures and prevent com- plications. Various studies, particularly those employing electrochemical or electromagnetic methods, are being conducted for glucose and lactate measurements, with efforts focused on standardizing these measurements. While results that correlate well with blood levels have been achieved, further research is needed to address issues such as sample collection, the applicability of measurement methods, and accessibility.

Keywords: Noninvasive monitoring; Glucose; Lactate

Referanslar

  1. Jensen ET, Stafford JM, Saydah S, D'Agostino RB, Dolan LM, Lawrence JM, et al. Increase in Prevalence of Diabetic Ketoacidosis at Diagnosis Among Youth With Type 1 Diabetes: The SEARCH for Diabetes in Youth Study. Diabetes Care. 2021 Jul;44(7):1573-78. [Crossref]  [PubMed]  [PMC]
  2. Dabelea D, Rewers A, Stafford JM, Standiford DA, Lawrence JM, Saydah S, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014 Apr;133(4):e938-45. [Crossref]  [PubMed]  [PMC]
  3. Laha S, Rajput A, Laha SS, Jadhav R. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. Biosensors (Basel). 2022 Nov 3;12(11):965. [Crossref]  [PubMed]  [PMC]
  4. Wu J, Liu Y, Yin H, Guo M. A new generation of sensors for non-invasive blood glucose monitoring. Am J Transl Res. 2023 Jun 15;15(6):3825-37. [PMC]
  5. Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. Sensors (Basel). 2020 Dec 4;20(23):6925. [Crossref]  [PubMed]  [PMC]
  6. Bruen D, Delaney C, Florea L, Diamond D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors (Basel). 2017 Aug 12;17(8):1866. [Crossref]  [PubMed]  [PMC]
  7. Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther. 2012 May;14(5):398-402. [Crossref]  [PubMed]
  8. Amer S, Yousuf M, Siddqiui PQ, Alam J. Salivary glucose concentrations in patients with diabetes mellitus--a minimally invasive technique for monitoring blood glucose levels. Pak J Pharm Sci 2001;14:33-7. [PubMed]
  9. Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017;3:e1701629. [Crossref]  [PubMed]  [PMC]
  10. Liu M, Yang M, Wang M, Wang H, Cheng J. A flexible dual-analyte electrochemical biosensor for salivary glucose and lactate detection. Biosensors (Basel). 2022;12:210. [Crossref]  [PubMed]  [PMC]
  11. Mohammadi P, Mohammadi A, Demir S, Kara A. Compact size, and highly sensitive, mi¬crowave sensor for non-invasive measurement of blood glucose level. IEEE Sensors Journal. 2021;21:16033-42. [Crossref]
  12. Chu MX, Miyajima K, Takahashi D, Arakawa T, Sano K, Sawada S, et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta. 2011 Jan 15;83(3):960-5. [Crossref]  [PubMed]
  13. Sealy C. Glucose monitoring in sweat and tears no stretch for new biosensors. Nano Today 2018;19:1-2. [Crossref]
  14. Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv. 2018 Jan 24;4(1):eaap9841. [Crossref]  [PubMed]  [PMC]
  15. Yu M, Li YT, Hu Y, Tang L, Yang F, Lv WL, et al. Gold nanostructure-pro¬grammed flexible electrochemical biosensor for detection of glucose and lactate in sweat. Journal of Electroanalytical Chemistry 2021;882:115029. [Crossref]
  16. Khalil, O.S. Spectroscopic and Clinical Aspects of Noninvasive Glucose Measurements. Clin. Chem. 1999; 45:165-77. [Crossref]  [PubMed]
  17. Cameron B, Coté G. Polarimetric detection of chiral chemicals in biological fluids. SPIE In ternational Biomedical Optics Conference. San Jose, CA: SPIE; 1997:308-313. [Crossref]
  18. Cameron BD, Gorde H, Cote GL. Development of an optical polarimeter for in-vivo glucose monitoring. Optical Diagnostics of Biological Fluids IV. SPIE; 1999:43-9. [Crossref]
  19. Pirnstill CW, Malik BH, Gresham VC, Coté GL. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion. Diabetes Technol Ther. 2012;14:819-27. [Crossref]  [PubMed]  [PMC]
  20. Bai Z, Zhu X, Li M, Hua J, Li Y, Pan J, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014 Mar 28;14:83. [Crossref]  [PubMed]  [PMC]
  21. Nichol AD, Egi M, Pettila V, Bellomo R, French C, Hart G, et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010;14(1):R25. [Crossref]  [PubMed]  [PMC]
  22. Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, et al. Lactate biosensing: The emergingpoint-of-care and personal health monitoring. Biosens Bioelectron. 2018 Oct 15;117:818-29. [Crossref]  [PubMed]
  23. Bariya M, Nyein HYY, Javey A.Wearable sweat sensors. Nat. Electron. 2018;1:160-171. [Crossref]
  24. Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small. 2020 Apr;16(15):e1901124. [Crossref]  [PubMed]
  25. Salim A, Lim S. Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron. 2019 Sep 15;141:111422. [Crossref]  [PubMed]
  26. Lafuente JL, González S, Aibar C, Rivera D, Avilés E, Beunza JJ. Continuous and Non-Invasive Lactate Monitoring Techniques in Critical Care Patients. Biosensors (Basel). 2024 Mar 18;14(3):148. [Crossref]  [PubMed]  [PMC]
  27. Crapnell RD, Tridente A, Banks CE, Dempsey-Hibbert NC. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. Sensors (Basel). 2021 Jan 28;21(3):879. [Crossref]  [PubMed]  [PMC]
  28. Mengarda P, Dias FA, Peixoto JV, Osiecki R, Bergamini M, Marcolino-Junior L. Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films. Sens. Actuators B Chem. 2019;296:126663. [Crossref]
  29. Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship between sweat and blood lactate levels during exhaustive physical exercise. ChemElectroChem 2020;7:191-4. [Crossref]
  30. Pilardeau PA, Lavie F, Vaysse J, Garnier M, Harichaux P, Margo JN, Chalumeau MT. Effect of different work-loads on sweat production and composition in man. J Sports Med Phys Fitness. 1988 Sep;28(3):247-52. [PubMed]
  31. Green JM, Bishop PA, Muir IH, McLester JR Jr, Heath HE. Effects of high and low blood lactate concentrations on sweat lactate response. Int J Sports Med. 2000 Nov;21(8):556-60. [Crossref]  [PubMed]
  32. Ament W, Huizenga JR, Mook GA, Gips CH, Verkerke GJ. Lactate and ammonia concentration in blood and sweat during incremental cycle ergometer exercise. Int J Sports Med. 1997 Jan;18(1):35-9. [Crossref]  [PubMed]
  33. Patterson MJ, Galloway SD, Nimmo MA. Variations in regional sweat composition in normal human males. Exp Physiol. 2000 Nov;85(6):869-75. [Crossref]  [PubMed]
  34. Ito N, Matsumoto T, Fujiwara H, Kayashima S, Arai T, Kikuchi M, Karube I, Matsumoto Y. Transcutaneous lactate monitoring based on a micro-planar amperometric biosensor. Anal. Chim. Acta 1995;312:323-328. [Crossref]
  35. Faridnia MH, Palleschi G, Lubrano GJ, Guilbault GG. Amperometric biosensor for determination of lactate in sweat. Anal. Chim. Acta 1993;278:35-40. [Crossref]
  36. Palleschi G, Faridnia MH, Lubrano G, Guilbault GG. Determination of lactate in human saliva with an electrochemical enzyme probe. Analytica Chimica Acta. 1991;245:151-157. [Crossref]
  37. Imani S, Bandodkar AJ, Mohan AM, Kumar R, Yu S, Wang J, Mercier PP. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun. 2016 May 23;7:11650. [Crossref]  [PubMed]  [PMC]
  38. Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, et al. Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsyst Nanoeng. 2023 Jan 1;9:1. [Crossref]  [PubMed]  [PMC]
  39. Xu J, Fang Y, Chen J. Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors (Basel). 2021 Jul 23;11(8):245. [Crossref]  [PubMed]  [PMC]
  40. Kristinsson, I.R. Sweat Lactate Sensor Integrated with Microfluidicand Iontophoresis System for Analysing Sweat without Physical Activity. Master's Thesis in Sports Technology, KTH Royal Institute of Technology School of Engineering Sciences in Chemistry, Biotechnology and Health, Stockholm, Sweden, 2022. [Link]
  41. García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors (Basel). 2022 Oct 25;12(11):919. [Crossref]  [PubMed]  [PMC]
  42. Kucherenko I, Topolnikova YV, Soldatkin OO. Advances in the Biosensors for Lactate and Pyruvate Detection for Medical Applications: A Review. TrAC Trends Anal. Chem. 2019;110:160-172. [Crossref]
  43. Mason A, Korostynska O, Louis J, Cordova-Lopez LE, Abdullah B, Greene J. et al. Noninvasive In-Situ Measurement of Blood Lactate Using Microwave Sensors. IEEE Trans. Biomed. Eng. 2018;65:698-705. [Crossref]  [PubMed]
  44. Goh JH, Mason A, Al-Shamma'a AI, Wylie SR, Field M, Browning P. Lactate Detection Using a Microwave Cavity Sensor for Biomedical Applications. In Proceedings of the 2011 Fifth International Conference on Sensing Technology, Palmerston North, New Zealand, 28 November-1 December 2011; pp. 436-441. [Crossref]
  45. Verma D, Singh KR, Yadav AK, Nayak V, Singh J, Solanki PR, Singh RP. Internet of Things (IoT) in Nano-Integrated Wearable Biosensor Devices for Healthcare Applications. Biosens. Bioelectron. 2022;11:100153. [Crossref]
  46. Gualandi I, Tessarolo M, Mariani F, Arcangeli D, Possanzini L, Tonelli D, et al. Layered Double Hydroxide-Modified Organic Electrochemical Transistor for Glucose and Lactate Biosensing. Sensors. 2020;20:3453. [Crossref]  [PubMed]  [PMC]
  47. Minami T, Sato T, Minamiki T, Fukuda K, Kumaki D, Tokito S. A Novel OFET-Based Biosensor for the Selective and Sensitive Detection of Lactate Levels. Biosens. Bioelectron. 2015;74:45-48. [Crossref]  [PubMed]