OPTICAL COHERENCE TOMOGRAPHY IN AGE-RELATED MACULAR DEGENERATION

Büşra Dilara Yıldırım Erdal

Ankara Etlik City Hospital, Department of Ophthalmology, Ankara, Türkiye

Yıldırım Erdal BD. Optical Coherence Tomography in Age-Related Macular Degeneration. In: Çıtırık M, Şekeryapan Gediz B, editors. Age-Related Macular Degeneration: Current Investigations and Treatments. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.47-59.

ABSTRACT

Age-related macular degeneration (AMD) is a disease characterized by a multifactorial etiology and pathogenesis that remains incompletely understood, leading to progressive degeneration of the posterior pole. Optical Coherence Tomography (OCT) is the primary diagnostic method used for assessing the diagnosis, prognosis, treatment decisions, and follow-up of AMD. Owing to its non-contact, non-invasive, and repeatable nature, along with its reasonable cost, high patient comfort, and short acquisition time, OCT has become essential in ophthalmology retina clinics. This section summarizes previously identified OCT findings in AMD, along with current biomarkers and their clinical significance.

Keywords: Choroidal neovascularization; Geographic atrophy; Macular degeneration age-related; Retinal drusen; Subretinal fluid

Referanslar

  1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2). [Crossref]  [PubMed]
  2. Oncel D, Corradetti G, Wakatsuki Y, Nittala MG, Velaga SB, Stambolian D, et al. Drusen morphometrics on optical coherence tomography in eyes with age-related macular degeneration and normal aging. Graefes Arch Clin Exp Ophthalmol.2023;261(9):2525-2533. [Crossref]  [PubMed]  [PMC]
  3. Yang S, Gao Z, Qiu H, Zuo C, Mi L, Xiao H, et al. Low-Reflectivity Drusen With Overlying RPE Damage Revealed by Spectral-Domain OCT: Hint for the Development of Age-Related Macular Degeneration. Front Med (Lausanne). 2021;8. [Crossref]  [PubMed]  [PMC]
  4. Balaratnasingam C, Yannuzzi LA, Curcio CA, Morgan WH, Querques G, Capuano V, et al. Associations Between Retinal Pigment Epithelium and Drusen Volume Changes During the Lifecycle of Large Drusenoid Pigment Epithelial Detachments. Invest Ophthalmol Vis Sci. 2016;57(13):5479-5489. [Crossref]  [PubMed]  [PMC]
  5. Zhang Q, Miller JML. Basic-science observations explain how outer retinal hyperreflective foci predict drusen regression and geographic atrophy in age-related macular degeneration. Eye (Lond). 2022;36(5):1115-1118. [Crossref]  [PubMed]  [PMC]
  6. Flores R, Fradinho AC, Pereira RS, Mendes JM, Seabra MC, Tenreiro S, et al. Identifying Imaging Predictors of Intermediate Age-Related Macular Degeneration Progression. Transl Vis Sci Technol. 2023;12(7). [Crossref]  [PubMed]  [PMC]
  7. Cassels NK, Wild JM, Margrain TH, Chong V, Acton JH. The use of microperimetry in assessing visual function in age-related macular degeneration. Surv Ophthalmol. 2018;63(1):40-55. [Crossref]  [PubMed]
  8. Shi Y, Yang J, Feuer W, Gregori G, Rosenfeld PJ. Persistent Hypertransmission Defects on En Face OCT Imaging as a Stand-Alone Precursor for the Future Formation of Geographic Atrophy. Ophthalmol Retina. 2021;5(12):1214-1225. [Crossref]  [PubMed]
  9. Guymer RH, Rosenfeld PJ, Curcio CA, Holz FG, Staurenghi G, Freund KB, et al. Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report4. Ophthalmology. 2020;127(3):394-409. [Crossref]  [PubMed]  [PMC]
  10. Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, Bird AC, et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology. 2018;125(4):537-548. [Crossref]  [PubMed]  [PMC]
  11. Pang CE, Messinger JD, Zanzottera EC, Freund KB, Curcio CA. The Onion Sign in Neovascular Age-Related Macular Degeneration Represents Cholesterol Crystals. Ophthalmology. 2015;122(11):2316-2326. [Crossref]  [PubMed]  [PMC]
  12. Cheung CMG, Lai TYY, Teo K, Ruamviboonsuk P, Chen SJ, Kim JE, et al. Polypoidal Choroidal Vasculopathy: Consensus Nomenclature and Non-Indocyanine Green Angiograph Diagnostic Criteria from the Asia-Pacific Ocular Imaging Society PCV Workgroup. Ophthalmology. 2021;128(3):443-452. [Link]
  13. Ohji M, Lanzetta P, Korobelnik JF, Wojciechowski P, Taieb V, Deschaseaux C, et al. Efficacy and Treatment Burden of Intravitreal Aflibercept Versus Intravitreal Ranibizumab Treat-and-Extend Regimens at 2 Years: Network Meta-Analysis Incorporating Individual Patient Data Meta-Regression and Matching-Adjusted Indirect Comparison. Adv Ther. 2020;37(5):2184-2198. [Crossref]  [PubMed]  [PMC]
  14. Fajnkuchen F, Cohen SY, Thay N, Ayrault S, Delahaye-Mazza C, Grenet T, et al. BRIDGE ARCH-SHAPED SEROUS RETINAL DETACHMENT IN AGE-RELATED MACULAR DEGENERATION. Retina. 2016;36(3):476-482. [Crossref]  [PubMed]
  15. Ravera V, Bottoni F, Giani A, Cigada M, Staurenghi G. RETINAL ANGIOMATOUS PROLIFERATION DIAGNOSIS: A Multiimaging Approach. Retina. 2016;36(12):2274-2281. [Crossref]  [PubMed]
  16. Nagiel A, Sarraf D, Sadda SR, Spaide RF, Jung JJ, Bhavsar KV, et al. Type 3 neovascularization: evolution, association with pigment epithelial detachment, and treatment response as revealed by spectral domain optical coherence tomography. Retina. 2015;35(4):638-647. [Crossref]  [PubMed]
  17. Daniel E, Shaffer J, Ying GS, Grunwald JE, Martin DF, Jaffe GJ, et al. Outcomes in Eyes with Retinal Angiomatous Proliferation in the Comparison of Age-Related Macular Degeneration Treatments Trials (CATT). Ophthalmology. 2016;123(3):609-616. [Crossref]  [PubMed]  [PMC]
  18. Kim JM, Lee MW, Lim HB, Won YK, Shin YI, Lee WH, et al. Longitudinal changes in the ganglion cell-inner plexiform layer thickness of age-related macular degeneration. Acta Ophthalmol. 2021;99(7):e1056-e1062. [Crossref]
  19. Jaffe GJ, Ying GS, Toth CA, Daniel E, Grunwald JE, Martin DF, et al. Macular Morphology and Visual Acuity in Year Five of the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology. 2019;126(2):252-260. [Crossref]  [PubMed]  [PMC]
  20. Sadda SVR, Tuomi LL, Ding B, Fung AE, Hopkins JJ. Macular Atrophy in the HARBOR Study for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2018;125(6):878-886. [Crossref]  [PubMed]
  21. Phadikar P, Saxena S, Ruia S, Lai TYY, Meyer CH, Eliott D. The potential of spectral domain optical coherence tomography imaging based retinal biomarkers. Int J Retina Vitreous. 2017;3(1). [Crossref]  [PubMed]  [PMC]
  22. Waldstein SM, Simader C, Staurenghi G, Chong NV, Mitchell P, Jaffe GJ, et al. Morphology and Visual Acuity in Aflibercept and Ranibizumab Therapy for Neovascular Age-Related Macular Degeneration in the VIEW Trials. Ophthalmology. 2016;123(7):1521-1529. [Crossref]  [PubMed]
  23. Schmidt-Erfurth U, Waldstein SM, Deak GG, Kundi M, Simader C. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology. 2015;122(4):822-832. [Crossref]  [PubMed]
  24. Jaffe GJ, Ying GS, Toth CA, Daniel E, Grunwald JE, Martin DF, et al. Macular Morphology and Visual Acuity in Year Five of the Comparison of Age-related Macular Degeneration Treatments Trials. Ophthalmology. 2019;126(2):252-260. [Crossref]  [PubMed]  [PMC]
  25. Willoughby AS, Ying GS, Toth CA, Maguire MG, Burns RE, Grunwald JE, et al. Subretinal Hyperreflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2015;122(9):1846-1853.e5. [Link]
  26. Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB. Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2017;58(6):BIO211-BIO226. [Link]
  27. Wu J, Zhang C, Yang Q, Xie H, Zhang J, Qiu Q, et al. Imaging Hyperreflective Foci as an Inflammatory Biomarker after Anti-VEGF Treatment in Neovascular Age-Related Macular Degeneration Patients with Optical Coherence Tomography Angiography. Biomed Res Int. 2021;2021. [Crossref]  [PubMed]  [PMC]
  28. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, et al. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica. 2013;229(1):32-37. [Crossref]  [PubMed]
  29. Moroz I, Moisseiev J, Alhalel A. Optical coherence tomography predictors of retinal pigment epithelial tear following intravitreal bevacizumab injection. Ophthalmic Surg Lasers Imaging. 2009;40(6):570-575. [Crossref]  [PubMed]
  30. Chan CK, Meyer CH, Gross JG, Abraham P, Nuthi AS, Kokame GT, et al. Retinal pigment epithelial tears after intravitreal bevacizumab injection for neovascular age-related macular degeneration. Retina. 2007;27(5):541-551. [Crossref]  [PubMed]
  31. Keane PA, Patel PJ, Liakopoulos S, Heussen FM, Sadda SR, Tufail A. Evaluation of age-related macular degeneration with optical coherence tomography. Surv Ophthalmol. 2012;57(5):389-414. [Crossref]  [PubMed]
  32. Daniel E, Pan W, Ying GS, Kim BJ, Grunwald JE, Ferris FL 3rd, et al. Development and Course of Scars in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2018;125(7):1037-1046. [Crossref]  [PubMed]  [PMC]
  33. Querques G, Coscas F, Forte R, Massamba N, Sterkers M, Souied EH. Cystoid macular degeneration in exudative age-related macular degeneration. Am J Ophthalmol. 2011;152(1):100-107.e2. [Crossref]  [PubMed]
  34. Cohen SY, Dubois L, Nghiem-Buffet S, Ayrault S, Fajnkuchen F, Guiberteau B, et al. Retinal pseudocysts in age-related geographic atrophy. Am J Ophthalmol. 2010;150(2):211- 217.e1. [Crossref]  [PubMed]
  35. Querques G, Coscas F, Forte R, Massamba N, Sterkers M, Souied EH. Cystoid macular degeneration in exudative age-related macular degeneration. Am J Ophthalmol. 2011;152(1):100-107.e2. [Crossref]  [PubMed]
  36. Litts KM, Messinger JD, Freund KB, Zhang Y, Curcio CA. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation. Invest Ophthalmol Vis Sci. 2015;56(4):2243-2253. [Crossref]  [PubMed]  [PMC]
  37. Schaal KB, Freund KB, Litts KM, Zhang Y, Messinger JD, Curcio CA. OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION: Optical Coherence Tomographic Findings Correspond to Histology. Retina. 2015;35(7):1339-1350. [Crossref]  [PubMed]  [PMC]
  38. Lee JY, Folgar FA, Maguire MG, Ying GS, Toth CA, Martin DF, et al. Outer retinal tubulation in the comparison of age-related macular degeneration treatments trials (CATT). Ophthalmology. 2014;121(12):2423-2431. [Crossref]  [PubMed]  [PMC]
  39. Maggio E, Polito A, Guerriero M, Prigione G, Parolini B, Pertile G. Vitreomacular Adhesion and the Risk of Neovascular Age-Related Macular Degeneration. Ophthalmology. 2017;124(5):657-666. [Crossref]  [PubMed]
  40. Kang EC, Koh HJ. Effects of Vitreomacular Adhesion on Age-Related Macular Degeneration. J Ophthalmol. 2015;2015. [Crossref]  [PubMed]  [PMC]
  41. Kim JH, Chang YS, Kim JW, Kim CG, Lee DW. Prechoroidal Cleft in Type 3 Neovascularization: Incidence, Timing, and Its Association with Visual Outcome. J Ophthalmol. 2018;2018. [Crossref]  [PubMed]  [PMC]
  42. Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D'alterio G, et al. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J Ophthalmol. 2021;2021(1):9994098. [Crossref]  [PubMed]  [PMC]
  43. Cozzi M, Monteduro D, Parrulli S, Ristoldo F, Corvi F, Zicarelli F, et al. Prechoroidal cleft thickness correlates with disease activity in neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2022;260(3):781-789. [Crossref]  [PubMed]  [PMC]
  44. Dolz-Marco R, Glover JP, Gal-Or O, Litts KM, Messinger JD, Zhang Y, et al. Choroidal and Sub-Retinal Pigment Epithelium Caverns: Multimodal Imaging and Correspondence with Friedman Lipid Globules. Ophthalmology. 2018;125(8):1287-1301. [Crossref]  [PubMed]  [PMC]
  45. Fernández-Avellaneda P, Freund KB, Wang RK, He Q, Zhang Q, Fragiotta S, et al. Multimodal Imaging Features and Clinical Relevance of Subretinal Lipid Globules. Am J Ophthalmol. 2021;222:112-125. [Crossref]  [PubMed]
  46. Xu X, Liu X, Wang X, Clark ME, McGwin G Jr, Owsley C, et al. Retinal Pigment Epithelium Degeneration Associated With Subretinal Drusenoid Deposits in Age-Related Macular Degeneration. Am J Ophthalmol. 2017;175:87-98. [Crossref]  [PubMed]  [PMC]
  47. Waldstein SM, Faatz H, Szimacsek M, Glodan AM, Podkowinski D, Montuoro A, et al. Comparison of penetration depth in choroidal imaging using swept source vs spectral domain optical coherence tomography. Eye (Lond). 2015;29(3):409-415. [Crossref]  [PubMed]  [PMC]
  48. Yiu G, Chiu SJ, Petrou PA, Stinnett S, Sarin N, Farsiu S, et al. Relationship of central choroidal thickness with age-related macular degeneration status. Am J Ophthalmol. 2015;159(4):617-626. [Crossref]  [PubMed]
  49. Koh LHL, Agrawal R, Khandelwal N, Sai Charan L, Chhablani J. Choroidal vascular changes in age-related macular degeneration. Acta Ophthalmol. 2017;95(7):e597-e601. [Crossref]
  50. Wei X, Ting DSW, Ng WY, Khandelwal N, Agrawal R, Cheung CMG. CHOROIDAL VASCULARITY INDEX: A Novel Optical Coherence Tomography Based Parameter in Patients With Exudative Age-Related Macular Degeneration. Retina. 2017;37(6):1120-1125. [Crossref]  [PubMed]