Passive Fit in Implant-Supported Fixed Protheses

Ceren KARAAHMETOĞLUa , Hamiyet GÜNGÖR ERDOĞANa

aLokman Hekim University Faculty of Dentistry, Department of Prosthodontics, Ankara, Türkiye

ABSTRACT
The stress on the implant and the surrounding bone is desired to be as low as possible in implant-supported prostheses. Today, passive fit is defined as the biological and mechanical compatibility of prostheses in a way that does not cause any complications in the long term. Passive fit between implant, substructure and abutments is very important for successful osseointegration. Passive fit of the prosthesis is essential for the long-term success of supporting structures such as teeth, mucosa or implants. There are many factors affecting the passive fit of the prosthesis. A compatible prosthesis should be obtained by providing the necessary controls in the clinical and laboratory stages. The presence of incompatible substructures may cause mechanical failure in implant-supported protheses or biological complications in surrounding tissues. Failure to achieve passive fit in prosthetic substructures causes loosening of prosthetic screws, fractures in the prosthesis and microcracks in the body of the implant as a result of pressure, tension and compression forces. Biological complications; tissue reactions, pain, sensitivity and bone loss around the implant due to stresses on the implant and consequently implants may be lost. In the fabrication of implant prosthesis substructures with conventional methods, dimensional changes may occur at any stage of production. With the advancing technology, efforts to improve the production techniques of prosthesis substructures are continuing. Today, it is aimed to produce implant prostheses that can function by reducing prosthetic complications as much as possible with advancing technology.
Keywords: Dental prosthesis; implant-supported, dental implants; prosthesis fitting

Referanslar

  1. Ma S, Fenton A. Screw- versus cement-retained implant prostheses: a systematic review of prosthodontic maintenance and complications. Int J Prosthodont. 2015;28(2):127-45. [Crossref]  [PubMed]
  2. Pereira LMS, Sordi MB, Magini RS, Calazans Duarte AR, Souza JCM. Abutment misfit in implant-supported prostheses manufactured by casting technique: An integrative review. Eur J Dent. 2017;11(4):553-8. [Crossref]  [PubMed]  [PMC]
  3. Altintas MA, Akin H. Effect of repetitive firing on passive fit of metal substructure produced by the laser sintering in implant-supported fixed prosthesis. J Adv Prosthodont. 2020;12(3):167-72. [Crossref]  [PubMed]  [PMC]
  4. Sherif S, Susarla SM, Hwang JW, Weber HP, Wright RF. Clinician- and patient-reported long-term evaluation of screw- and cement-retained implant restorations: a 5-year prospective study. Clin Oral Investig. 2011;15(6):993-9. [Crossref]  [PubMed]
  5. Aykent F, Özdoğan MS, Soğancı G. Occlusion of Implant Supported Prostheses. Turkiye Klinikleri J Dental Sci. 2019;25(1):104-12. [Crossref]
  6. Güngör Erdoğan H, Yiğit E. İmplant Destekli Protezlerde Vida Gevşemesi. J Dent Fac Atatürk Uni. 2021;31(1):138-46.
  7. Lee A, Okayasu K, Wang HL. Screw- versus cement-retained implant restorations: current concepts. Implant Dent. 2010;19(1):8-15. [Crossref]  [PubMed]  [PMC]
  8. Şen N, Ölçer Us Y. İmplant Destekli Sabit Protetik Restorasyonlar için Dayanak Seçimi. 2019;25(1):104-12. [Crossref]
  9. Nogueira LB, Moura CD, Francischone CE, et al. Fracture Strength of Implant-Supported Ceramic Crowns with Customized Zirconia Abutments: Screw Retained vs. Cement Retained. J Prosthodont. 2016;25(1):49-53. [Crossref]  [PubMed]
  10. Rutkunas V, Larsson C, Vult von Steyern P, Mangano F, Gedrimiene A. Clinical and laboratory passive fit assessment of implant-supported zirconia restorations fabricated using conventional and digital workflow. Clin Implant Dent Relat Res. 2020;22(2):237-45. [Crossref]  [PubMed]
  11. Kahramanoğlu E, Kulak-Özkan Y. The effect of different restorative and abutment materials on marginal and internal adaptation of three-unit cantilever implant-supported fixed partial dentures: an in vitro study. J Prosthodont. 2013;22(8):608-17. [Crossref]  [PubMed]
  12. Buzayan MM, Yunus NB. Passive Fit in Screw Retained Multi-unit Implant Prosthesis Understanding and Achieving: A Review of the Literature. J Indian Prosthodont Soc. 2014;14(1):16-23. [Crossref]  [PubMed]  [PMC]
  13. Kahramanoğlu E, Kulak Özkan Y. Passive Fit in Implant Supported Dentures. Cumhuriyet Dent J. 2012;15(3):255-63. [Crossref]
  14. Ozan O, Hamis O. Accuracy of different definitive impression techniques with the all-on-4 protocol. J Prosthet Dent. 2019;121(6):941-8. [Crossref]  [PubMed]
  15. Richi MW, Kurtulmus-Yilmaz S, Ozan O. Comparison of the accuracy of different impression procedures in case of multiple and angulated implants : Accuracy of impressions in multiple and angulated implants. Head Face Med. 2020;16(1):9. [Crossref]  [PubMed]  [PMC]
  16. Siadat H, Alikhasi M, Beyabanaki E, Rahimian S. Comparison of Different Impression Techniques When Using the All-on-Four Implant Treatment Protocol. Int J Prosthodont. 2016;29(3):265-70. [Crossref]  [PubMed]
  17. Buzayan M, Baig MR, Yunus N. Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials. Int J Oral Maxillofac Implants. 2013;28(6):1512-20. [Crossref]  [PubMed]
  18. Mpikos P, Kafantaris N, Tortopidis D, Galanis C, Kaisarlis G, Koidis P. The effect of impression technique and implant angulation on the impression accuracy of external- and internal-connection implants [published correction appears in Int J Oral Maxillofac Implants. 2013;28(1):43. Kafantaris, Nikolaos [added]]. Int J Oral Maxillofac Implants. 2012;27(6):1422-8.
  19. Rashidan N, Alikhasi M, Samadizadeh S, Beyabanaki E, Kharazifard MJ. Accuracy of implant impressions with different impression coping types and shapes. Clin Implant Dent Relat Res. 2012;14(2):218-25. [Crossref]  [PubMed]
  20. Yasar MN, Cetinsahin C, Bayar O, Ozer HY. Implant Impression Techniques using Different Materials and Methods: A Review. J Clin of Diagn Res. 2022; 16(2):ZE12-ZE17. [Crossref]
  21. Keskin Özyer E, Kahramanoğlu E, Aslan YU, Özkan Y. Impression Techniques and Materials Used in Implant Supported Prosthetic Restorations: A Review. European Journal of Research in Dentistry. 2019;3:124-32. [Crossref]
  22. Mirebani A, Najafova L, Sarı T, Kurtulmuş H. İmplant Üstü Geleneksel Ölçü Yöntem, Teknik Ve Malzemelerinin Karşılaştırmalı Olarak Gözden Geçirilmesi: Sistematik Bir Güncelleme. Aydın Dental Journal. 2019;5(1):27-50.
  23. Nakhaei M, Madani AS, Moraditalab A, Haghi HR. Three-dimensional accuracy of different impression techniques for dental implants. Dent Res J (Isfahan). 2015;12(5):431-7. [Crossref]  [PubMed]  [PMC]
  24. Rutkunas V, Bilius V, Simonaitis T, Auskalnis L, Jurgilevicius J, Akulauskas M. The effect of different implant impression splinting techniques and time on the dimensional accuracy: An in vitro study. J Dent. 2022;126:104267. [Crossref]  [PubMed]
  25. Lee SJ, Gallucci GO. Digital vs. conventional implant impressions: efficiency outcomes. Clin Oral Implants Res. 2013;24(1):111-5. [Crossref]  [PubMed]
  26. Lee H, Ercoli C, Funkenbusch PD, Feng C. Effect of subgingival depth of implant placement on the dimensional accuracy of the implant impression: an in vitro study. J Prosthet Dent. 2008;99(2):107-13. [Crossref]  [PubMed]
  27. Lee MY, Heo SJ, Park EJ, Park JM. Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses. J Adv Prosthodont. 2013;5(3):312-8. [Crossref]  [PubMed]  [PMC]
  28. Wee AG, Aquilino SA, Schneider RL. Strategies to achieve fit in implant prosthodontics: a review of the literature. Int J Prosthodont. 1999;12(2):167-78.
  29. Abduo J, Lyons K, Bennani V, Waddell N, Swain M. Fit of screw-retained fixed implant frameworks fabricated by different methods: a systematic review. Int J Prosthodont. 2011;24(3):207-20.
  30. Mukhopadhyay P, Khalikar A, Wankhade S, Deogade S, Shende R. The Passive Fit Concept - A Review of Methods to Achieve and Evaluate in Multiple Unit Implant Supported Screw Retained Prosthesis. J Dent Oral Sci. 2021;3(2):1-7. [Crossref]
  31. Eisenmann E, Mokabberi A, Walter MH, Freesmeyer WB. Improving the fit of implant-supported superstructures using the spark erosion technique. Int J Oral Maxillofac Implants. 2004;19(6):810-8.
  32. Baba NZ, AlRumaih HS, Goodacre BJ, Goodacre CJ. Current techniques in CAD/CAM denture fabrication. Gen Dent. 2016;64(6):23-8.
  33. Carneiro Pereira AL, Bezerra de Medeiros AK, de Sousa Santos K, Oliveira de Almeida É, Seabra Barbosa GA, da Fonte Porto Carreiro A. Accuracy of CAD-CAM systems for removable partial denture framework fabrication: A systematic review. J Prosthet Dent. 2021;125(2):241-8. [Crossref]  [PubMed]
  34. Al-Meraikhi H, Yilmaz B, McGlumphy E, Brantley W, Johnston WM. In vitro fit of CAD-CAM complete arch screw-retained titanium and zirconia implant prostheses fabricated on 4 implants. J Prosthet Dent. 2018;119(3):409-16. [Crossref]  [PubMed]
  35. Papavassiliou H, Kourtis S, Katerelou J, Chronopoulos V. Radiographical evaluation of the gap at the implant-abutment interface. J Esthet Restor Dent. 2010;22(4):235-50. [Crossref]  [PubMed]
  36. Badur S, Sarıdağ S. Tam-Ark İmplant-Destekli Sabit Protezlerde Fotogrametri Tekniğinin Değerlendirilmesi. Dental and Medical Journal-Review. 2022;4(2):90-102.