Personalized Auricular Non-invasive Vagus Nerve Stimulation System for Inflammatory Bowel Disease Treatment

geleneksel tip-5-2-wos-kapak

Gizem ZORLU GÖRGÜLÜGİLa , Ali Veysel ÖZDENb

aAntalya Atatürk State Hospital, Clinic of Internal Medicine, Antalya, Türkiye
bBahçeşehir University Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, İstanbul, Türkiye

ABSTRACT
Inflammatory bowel disease (IBD) is a chronic relapsing clinic condition whose cure could be very difficult even with new treatments. Although tremendous changes have occured in IBD treatment; there is an unmet need for a low-cost, easy-to-access treatment associated with low side effects. Possible dysfunction of interaction between the microbiome-gut-brain axis and autonomic nervous system; expecially vagus nerve dysfunction can be targeted for a new therapy. Given this, vagus nerve stimulation (VNS) camoes to the fore. Using present literature, we reviewed pathophysiology of IBD and anti inflammatory effect of VNS and the current aim of this review is to provide a comprehensive understanding of the effect of VNS on gut inflammation and the potential of personalized auricular VNS on IBD management. In the field of precision medicine these days, when digital transformation in health comes to the fore, personalized auricular VNS which uses machine learning algortims may be an complementary treatment of IBD.
Keywords: Autonomic nervous system; complementary medicine; inflammatory bowel disease; vagus nerve stimulation

Referanslar

  1. Chang JT. Pathophysiology of Inflammatory Bowel Diseases. N Engl J Med. 2020;383(27):2652-64. [Crossref]  [PubMed]
  2. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769-78. Erratum in: Lancet. 2020;396(10256):e56. [Crossref]  [PubMed]
  3. Nadpara N, Reichenbach ZW, Ehrlich AC, Friedenberg F. Current Status of Medical Therapy for Inflammatory Bowel Disease: The Wealth of Medications. Dig Dis Sci. 2020;65(10):2769-79. [Crossref]  [PubMed]
  4. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595-638.
  5. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284-9. [Crossref]  [PubMed]  [PMC]
  6. Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther. 2017;179:1-16. [Crossref]  [PubMed]  [PMC]
  7. Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res. 2019;2019:7247238. [Crossref]  [PubMed]  [PMC]
  8. Conrad MA, Kelsen JR. Genomic and Immunologic Drivers of Very Early-Onset Inflammatory Bowel Disease. Pediatr Dev Pathol. 2019;22(3):183-93. [Crossref]  [PubMed]  [PMC]
  9. Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16(6):331-45. [Crossref]  [PubMed]
  10. Papadakis KA, Targan SR. The role of chemokines and chemokine receptors in mucosal inflammation. Inflamm Bowel Dis. 2000;6(4):303-13. [Crossref]  [PubMed]
  11. Collins SM. Interrogating the Gut-Brain Axis in the Context of Inflammatory Bowel Disease: A Translational Approach. Inflamm Bowel Dis. 2020;26(4):493-501. [Crossref]  [PubMed]  [PMC]
  12. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1-2):84-96. [Crossref]  [PubMed]
  13. Rubio A, Pellissier S, Picot A, Dantzer C, Bonaz B. The link between negative affect, vagal tone, and visceral sensitivity in quiescent Crohn's disease. Neurogastroenterol Motil. 2014;26(8):1200-3. [Crossref]  [PubMed]
  14. Pereira MR, Leite PE. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex. J Cell Physiol. 2016;231(9):1862-9. [Crossref]  [PubMed]
  15. Benarroch EE. Autonomic nervous system and neuroimmune interactions: New insights and clinical implications. Neurology. 2019;92(8):377-85. [Crossref]  [PubMed]
  16. Cailotto C, Gomez-Pinilla PJ, Costes LM, van der Vliet J, Di Giovangiulio M, Némethova A, et al. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One. 2014;9(1):e87785. [Crossref]  [PubMed]  [PMC]
  17. Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C, van Bree SH, et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut. 2014;63(6):938-48. [Crossref]  [PubMed]
  18. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology. 2006;131(4):1122-30. [Crossref]  [PubMed]
  19. Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol. 2014;817:115-33. [Crossref]  [PubMed]
  20. Eberhardson M, Levine YA, Tarnawski L, Olofsson PS. The brain-gut axis, inflammatory bowel disease and bioelectronic medicine. Int Immunol. 2021;33(6):349-56. [Crossref]  [PubMed]
  21. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A. 2018;115(21):E4843-E52. [Crossref]  [PubMed]  [PMC]
  22. Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab. 2018;12:62-75. [Crossref]  [PubMed]  [PMC]
  23. Miao FJ, Green PG, Levine JD. Mechanosensitive duodenal afferents contribute to vagal modulation of inflammation in the rat. J Physiol. 2004;554(Pt 1):227-35. [Crossref]  [PubMed]  [PMC]
  24. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med. 2005;202(8):1023-9. [Crossref]  [PubMed]  [PMC]
  25. van der Zanden EP, Snoek SA, Heinsbroek SE, Stanisor OI, Verseijden C, Boeckxstaens GE, et al. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology. 2009;137(3):1029-39, 1039.e1-4. [Crossref]  [PubMed]
  26. Hesampour F, Bernstein CN, Ghia JE. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches. Inflamm Bowel Dis. 2024;30(3):482-95. [Crossref]  [PubMed]
  27. Bonaz B, Sinniger V. Targeting the Vagus Nerve to Treat Inflammatory Bowel Disease? J Crohns Colitis. 2023;17(12):1893-4. [Crossref]  [PubMed]
  28. D'Haens G, Eberhardson M, Cabrijan Z, Danese S, van den Berg R, Löwenberg M, et al. Neuroimmune Modulation Through Vagus Nerve Stimulation Reduces Inflammatory Activity in Crohn's Disease Patients: A Prospective Open-label Study. J Crohns Colitis. 2023;17(12):1897-909. [Crossref]  [PubMed]  [PMC]
  29. Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ. Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells. 2019;8(7):670. [Crossref]  [PubMed]  [PMC]
  30. Marshall R, Taylor I, Lahr C, Abell TL, Espinoza I, Gupta NK, et al. Bioelectrical Stimulation for the Reduction of Inflammation in Inflammatory Bowel Disease. Clin Med Insights Gastroenterol. 2015;8:55-9. [Crossref]  [PubMed]  [PMC]
  31. Kibleur A, Pellissier S, Sinniger V, Robert J, Gronlier E, Clarençon D, et al. Electroencephalographic correlates of low-frequency vagus nerve stimulation therapy for Crohn's disease. Clin Neurophysiol. 2018;129(5):1041-6. [Crossref]  [PubMed]
  32. Matteoli G, Boeckxstaens GE. The vagal innervation of the gut and immune homeostasis. Gut. 2013;62(8):1214-22. [Crossref]  [PubMed]  [PMC]
  33. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-90. [Crossref]  [PubMed]  [PMC]
  34. Cheng J, Shen H, Chowdhury R, Abdi T, Selaru F, Chen JDZ. Potential of Electrical Neuromodulation for Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020;26(8):1119-30. [Crossref]  [PubMed]
  35. Bonaz B, Sinniger V, Pellissier S. Therapeutic Potential of Vagus Nerve Stimulation for Inflammatory Bowel Diseases. Front Neurosci. 2021;15:650971. [Crossref]  [PubMed]  [PMC]
  36. Sinniger V, Pellissier S, Fauvelle F, Trocmé C, Hoffmann D, Vercueil L, et al. A 12-month pilot study outcomes of vagus nerve stimulation in Crohn's disease. Neurogastroenterol Motil. 2020;32(10):e13911. [Crossref]  [PubMed]
  37. Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand J Immunol. 2019;89(3):e12745. [Crossref]  [PubMed]
  38. Sahn B, Pascuma K, Tracey K, Markowitz J. P072 Non-invasive Vagal Nerve Stimulation to Treat Crohn Disease and Ulcerative Colitis in Children and Young Adults: A Proof-of-Concept Clinical Trial. Am J Gastroenterol. 2021;116(Suppl 1):S19. [Crossref]  [PubMed]
  39. Caravaca AS, Gallina AL, Tarnawski L, Tracey KJ, Pavlov VA, Levine YA, et al. An Effective Method for Acute Vagus Nerve Stimulation in Experimental Inflammation. Front Neurosci. 2019;13:877. [Crossref]  [PubMed]  [PMC]
  40. Murray K, Reardon C. The cholinergic anti-inflammatory pathway revisited. Neurogastroenterol Motil. 2018;30(3):10.1111/nmo.13288. [Crossref]  [PubMed]  [PMC]
  41. Tsaava T, Datta-Chaudhuri T, Addorisio ME, Masi EB, Silverman HA, Newman JE, et al. Specific vagus nerve stimulation parameters alter serum cytokine levels in the absence of inflammation. Bioelectron Med. 2020;6:8. [Crossref]  [PubMed]  [PMC]
  42. Bonaz B. Parameters matter: modulating cytokines using nerve stimulation. Bioelectron Med. 2020;6:12. [Crossref]  [PubMed]  [PMC]
  43. Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, et al. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci. 2019;13:854. [Crossref]  [PubMed]  [PMC]
  44. Kutlu N, Özden AV, Alptekin HK, Alptekin JÖ. The Impact of Auricular Vagus Nerve Stimulation on Pain and Life Quality in Patients with Fibromyalgia Syndrome. Biomed Res Int. 2020;2020:8656218. [Crossref]  [PubMed]  [PMC]
  45. Chen JL, Chiu HW, Tseng YJ, Chu WC. Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: evidence from spectral analysis of heart rate variability. Clin Endocrinol (Oxf). 2006;64(6):611-6. [Crossref]  [PubMed]
  46. Yu Y, Ling J, Yu L, Liu P, Jiang M. Closed-Loop Transcutaneous Auricular Vagal Nerve Stimulation: Current Situation and Future Possibilities. Front Hum Neurosci. 2022;15:785620. [Crossref]  [PubMed]  [PMC]