Phagocytic Disorders

Fatma Arzu AKKUŞa , Şevket ARSLANa
aNecmettin Erbakan University Faculty of Medicine, Department of Internal Medicine, Division of Immunology and Allergy Diseases, Konya, Türkiye

Akkuş FA, Arslan Ş. Phagocytic disorders. Çölkesen F, ed. Primary Immunodeficiency Diseases in Adults. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.51-7.

ABSTRACT
The fifth category of International Union of Immunologic Societies (IUIS) Inborn Errors of Immunity (IEI) includes phagocytic disorders. Phagocytes are among first immunologic cells arriving at sites of infection. They elicit an effective response in innate immunity, which is the first line of defense where pathogens encounter. Phagocytic disorders lead to various types of immunodeficiencies, ranging from mild cutaneous infections to severe systemic infections. While immune response against viral infections is intact, there is a hypersensitivity to bacterial and fungal infections. Early diagnosis, prevention of infections, and management of complications are life-saving.

Keywords: Phagocytic disorders; chronic granulomatous disease; congenital neutropenia

Referanslar

  1. Silva MT. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol. 2010;87(1):93-106. [Crossref]  [PubMed]
  2. Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845-59. [Crossref]  [PubMed]
  3. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42(7):1473-507. [Crossref]  [PubMed]  [PMC]
  4. Wu EY, Ehrlich L, Handly B, Frush DP, Buckley RH. Clinical and imaging considerations in primary immunodeficiency disorders: an update. Pediatr Radiol. 2016;46(12):1630-44. [Crossref]  [PubMed]  [PMC]
  5. Lanini LL, Prader S, Siler U, Reichenbach J. Modern management of phagocyte defects. Pediatr Allergy Immunol. 2017;28(2):124-34. [Crossref]  [PubMed]
  6. Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB. Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis. 2011;6:26. [Crossref]  [PubMed]  [PMC]
  7. Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and primary immunodeficiency diseases. Int Rev Immunol. 2009;28(5):335-66. [Crossref]  [PubMed]
  8. Xia J, Bolyard AA, Rodger E, Stein S, Aprikyan AA, Dale DC, Link DC. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol. 2009;147 (4):535-42. [Crossref]  [PubMed]  [PMC]
  9. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189-95. [Crossref]  [PubMed]
  10. Carlsson G, Ahlin A, Dahllöf G, Elinder G, Henter JI, Palmblad J. Efficacy and safety of two different rG-CSF preparations in the treatment of patients with severe congenital neutropenia. Br J Haematol. 2004;126(1):127-32. [Crossref]  [PubMed]
  11. Rosenberg PS, Zeidler C, Bolyard AA, Alter BP, Bonilla MA, Boxer LA, Dror Y, Kinsey S, Link DC, Newburger PE, Shimamura A, Welte K, Dale DC. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol. 2010;150(2):196-9. [Crossref]  [PubMed]  [PMC]
  12. Fioredda F, Iacobelli S, van Biezen A, Gaspar B, Ancliff P, Donadieu J, et al. Severe Aplastic Anemia the Inborn Error, and the Pediatric Disease Working Parties of the European Society for Blood and Bone Marrow Transplantation (EBMT) and Stem Cell Transplant for Immunodeficiencies in Europe (SCETIDE). Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood. 2015;126(16):1885-92; quiz 1970. [Crossref]  [PubMed]
  13. Horwitz MS, Corey SJ, Grimes HL, Tidwell T. ELANE mutations in cyclic and severe congenital neutropenia: genetics and pathophysiology. Hematol Oncol Clin North Am. 2013;27(1):19-41, vii. [Crossref]  [PubMed]  [PMC]
  14. Sievers EL, Dale DC. Non-malignant neutropenia. Blood Rev. 1996;10(2):95-100. [Crossref]  [PubMed]
  15. Palmer SE, Stephens K, Dale DC. Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet. 1996;66 (4):413-22. [Crossref]
  16. Barnes C, Gerstle JT, Freedman MH, Carcao MD. Clostridium septicum myonecrosis in congenital neutropenia. Pediatrics. 2004;114(6):e757-60. [Crossref]  [PubMed]
  17. Mir P, Klimiankou M, Findik B, Hähnel K, Mellor-Heineke S, Zeidler C, et al. New insights into the pathomechanism of cyclic neutropenia. Annals of the New York Academy of Sciences. 2020;1466(1):83-92. [Crossref]  [PubMed]
  18. Horwitz MS, Duan Z, Korkmaz B, Lee HH, Mealiffe ME, Salipante SJ. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood. 2007;109(5):1817-24. [Crossref]  [PubMed]  [PMC]
  19. Dale DC, Bolyard A, Marrero T, Makaryan V, Bonilla M, Link DC, et al. Long-Term Effects of G-CSF Therapy in Cyclic Neutropenia. N Engl J Med. 2017;377(23):2290-2. [Crossref]  [PubMed]  [PMC]
  20. Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am. 2018;32(4):687-700. [Crossref]  [PubMed]
  21. Dror Y, Freedman MH. Shwachman-diamond syndrome. Br J Haematol. 2002;118(3):701-13. [Crossref]  [PubMed]
  22. Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol. 2008;172(1):1-7. [Crossref]  [PubMed]  [PMC]
  23. Almarza Novoa E, Kasbekar S, Thrasher AJ, Kohn DB, Sevilla J, Nguyen T, et al. Leukocyte adhesion deficiency-I: A comprehensive review of all published cases. The journal of allergy and clinical immunology In practice. 2018;6(4):1418-20.e1410. [Crossref]  [PubMed]
  24. De Rose DU, Giliani S, Notarangelo LD, Lougaris V, Lanfranchi A, Moratto D, et al. Long term outcome of eight patients with type 1 Leukocyte Adhesion Deficiency (LAD-1): Not only infections, but high risk of autoimmune complications. Clin Immunol. 2018;191:75-80. [Crossref]  [PubMed]
  25. Qasim W, Cavazzana-Calvo M, Davies EG, Davis J, Duval M, Eames G, et al. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency. Pediatrics. 2009;123(3):836-40. [Crossref]  [PubMed]  [PMC]
  26. Cagdas D, Yilmaz M, Kandemir N, Tezcan I, Etzioni A, Sanal Ö. A novel mutation in leukocyte adhesion deficiency type II/CDGIIc. J Clin Immunol. 2014;34(8):1009-14. [Crossref]  [PubMed]
  27. Marquardt T, Lühn K, Srikrishna G, Freeze HH, Harms E, Vestweber D. Correction of leukocyte adhesion deficiency type II with oral fucose. Blood. 1999;94(12):3976-85. [Crossref]  [PubMed]
  28. Mory A, Feigelson SW, Yarali N, Kilic SS, Bayhan GI, Gershoni-Baruch R, et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood. 2008;112(6):2591. [Crossref]  [PubMed]
  29. Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15(3):306-12. [Crossref]  [PubMed]  [PMC]
  30. Stepensky PY, Wolach B, Gavrieli R, Rousso S, Ben Ami T, Goldman V, et al. Leukocyte adhesion deficiency type III: clinical features and treatment with stem cell transplantation. J Pediatr Hematol Oncol. 2015;37(4):264-8. [Crossref]  [PubMed]
  31. Arnold DE, Heimall JR. A Review of Chronic Granulomatous Disease. Adv Ther. 2017;34(12):2543-57. [Crossref]  [PubMed]  [PMC]
  32. Yu HH, Yang YH, Chiang BL. Chronic Granulomatous Disease: a Comprehensive Review. Clin Rev Allergy Immunol. 2021;61(2):101-13. [Crossref]  [PubMed]
  33. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S, et al. Common severe infections in chronic granulomatous disease. Clin Infect Dis. 2015;60(8):1176-83. [Crossref]  [PubMed]  [PMC]
  34. Seger RA. Modern management of chronic granulomatous disease. Br J Haematol. 2008;140(3):255-66. [Crossref]  [PubMed]
  35. Connelly JA, Marsh R, Parikh S, Talano JA. Allogeneic Hematopoietic Cell Transplantation for Chronic Granulomatous Disease: Controversies and State of the Art. J Pediatric Infect Dis Soc. 2018;7(suppl_1):S31-S39. [Crossref]  [PubMed]  [PMC]
  36. Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008;15(1):22-9. [Crossref]  [PubMed]
  37. Gil-Krzewska A, Saeed MB, Oszmiana A, Fischer ER, Lagrue K, Gahl WA, et al. An actin cytoskeletal barrier inhibits lytic granule release from natural killer cells in patients with Chediak-Higashi syndrome. J Allergy Clin Immunol. 2018;142(3):914-27.e6. [Crossref]  [PubMed]  [PMC]
  38. Mathis S, Cintas P, de Saint-Basile G, Magy L, Funalot B, Vallat JM. Motor neuronopathy in Chediak-Higashi syndrome. J Neurol Sci. 2014;344(1-2):203-7. [Crossref]  [PubMed]
  39. Jessen B, Maul-Pavicic A, Ufheil H, Vraetz T, Enders A, Lehmberg K, et al. Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood. 2011;118(17):4620-9. [Crossref]  [PubMed]
  40. Thakor A, Geng B, Liebhaber M, Moore T, Wang K, Roberts RL. Successful stem cell transplantation in Chediak-Higashi syndrome. J Allergy Clin Immunol Pract. 2015;3(2):271-2. [Crossref]  [PubMed]