PHARMACOLOGICAL TREATMENT OF OVERACTIVE BLADDER

Eyüp Gökhan Turmuş

Ankara Etlik City Hospital, Department of Gynecology and Obstetrics, Ankara, Türkiye

Turmuş EG. Pharmacological Treatment of Overactive Bladder. In: Balsak D, Çim N, Ege S editors. Urogynecological Surgery Current Approaches and Treatments for Incontinence. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.115-127.

ABSTRACT

Overactive bladder (OAB) is a chronic syndrome characterized by urinary urgency, with or without urge incontinence, frequently accompanied by increased daytime frequency and nocturia, in the absence of identifiable pathology. Its pathogenesis is multifactorial, involving detrusor muscle overactivity, afferent nerve hypersensitivity, and central nervous system dysfunction. The global prevalence of OAB is estimated at nearly 20%, with higher rates among older adults and obese individuals. Beyond its physical manifestations, OAB significantly impairs psychological, emotional, and sexual health and imposes healthcare costs more than double those of unaffected populations, making it a major public health concern. Pharmacological therapy remains the cornerstone of OAB management when lifestyle and behavioral interventions are insufficient. Antimuscarinic agents-including oxybutynin, tolterodine, solifenacin, darifenacin, fesoterodine, trospium, imidafenacin, and propiverine-exert their effect by blocking muscarinic receptors and modulating afferent activity, thereby reducing detrusor overactivity. Clinical utility is influenced by receptor subtype selectivity, pharmacokinetics, and ability to cross the blood-brain barrier. Despite proven efficacy, adverse events such as dry mouth, constipation, and cognitive impairment frequently limit adherence, particularly in elderly patients. Extended-release and

transdermal formulations improve tolerability but do not eliminate these challenges. b3-adrenergic receptor agonists, such as mirabegron and vibegron, have emerged as effective alternatives. By enhancing bladder storage capacity during the filling phase without impairing voiding, they provide symptom

relief with a more favorable side effect profile. These agents are particularly suitable for older adults or those at risk of anticholinergic burden, although blood pressure monitoring is recommended due to occasional cardiovascular effects. Additional therapeutic strategies include phosphodiesterase inhibitors, topical estrogen in postmenopausal women, centrally acting agents, and intravesical botulinum toxin injections for refractory cases. In carefully selected populations, these options may enhance symptom control, often in combination with standard therapies. In conclusion, individualized pharmacological management of OAB is essential, balancing efficacy, safety, and patient-specific factors. While antimuscarinics and b3-agonists remain first-line agents, emerging drugs and combination regimens hold

promise for improving long-term outcomes and reducing the clinical and economic burden of OAB.

Keywords: Urinary bladder, overactive; Adrenergic beta-3 receptor agonists; Muscarinic Antagonists; Adverse effects; IncobotulinumtoxinA

Referanslar

  1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, Van Kerrebroeck P, Victor A, Wein A, Standardisation Sub-Committee of the International Continence Society. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology. 2003;61(1):37-49. [Crossref]  [PubMed]
  2. Zhang L, Cai N, Mo L, Tian X, Liu H, Yu B. Global prevalence of overactive bladder: a systematic review and meta-analysis. Int Urogynecol J. 2025. [Crossref]  [PMC]
  3. Duperrouzel C, Martin C, Mendell A, Bourque M, Carrera A, Mack A, Nesheim J. Healthcare and economic burden of anticholinergic use in adults with overactive bladder: a systematic literature review. J Comp Eff Res. 2022;(18):13751394. [Crossref]  [PubMed]
  4. Leron E, Weintraub AY, Mastrolia SA, Schwarzman P. Overactive bladder syndrome: evaluation and management. Curr Urol. 2018;11(3):117-125. [Crossref]  [PubMed]  [PMC]
  5. Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and emerging pharmacological targets and treatments of urinary incontinence and related disorders. Pharmacol Rev. 2023;75(4):554-674. [Crossref]  [PubMed]
  6. Ghossein N, Kang M, Lakhkar AD. Anticholinergic medications. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
  7. Jain S, Malhotra D, Gowda C, Mehra MM. Urinary incontinence: symptoms, diagnosis and management. Indian Obstet Gynecol. 2025;15(1):51-57.
  8. Rosa GM, Baccino D, Valbusa A, Scala C, Barra F, Brunelli C, et al. Cardiovascular effects of antimuscarinic agents and beta3-adrenergic receptor agonist for the treatment of overactive bladder. Expert Opin Drug Saf. 2018;17(5):487-497. [Crossref]  [PubMed]
  9. Kim YJ, Tae BS, Bae JH. Cognitive function and urologic medications for lower urinary tract symptoms. Int Neurourol J. 2020;24(3):231. [Crossref]  [PubMed]  [PMC]
  10. Michel MC, Hegde SS. Treatment of the overactive bladder syndrome with muscarinic receptor antagonists-a matter of metabolites? Naunyn Schmiedebergs Arch Pharmacol. 2006;374:79-85. [Crossref]  [PubMed]
  11. Müderrisoglu AE, Oelke M, Schneider T, Murgas S, de la Rosette JJ, Michel MC. What are realistic expectations to become free of overactive bladder symptoms? Experience from non-interventional studies with propiverine. Adv Ther. 2022;39(6):2489-2501. [Crossref]  [PubMed]  [PMC]
  12. Maman K, Aballea S, Nazir J, Desroziers K, Neine M-E, Siddiqui E, et al. Comparative efficacy and safety of medical treatments for the management of overactive bladder: a systematic literature review and mixed treatment comparison. Eur Urol. 2014;65(4):755-765. [Crossref]  [PubMed]
  13. Dmochowski RR, Thai S, Iglay K, Enemchukwu E, Tee S, Varano S, et al. Increased risk of incident dementia following use of anticholinergic agents: a systematic literature review and meta-analysis. Neurourol Urodyn. 2021;40(1):28-37. [Crossref]  [PubMed]  [PMC]
  14. Müderrisoglu AE, Becher KF, Madersbacher S, Michel MC. Cognitive and mood side effects of lower urinary tract medication. Expert Opin Drug Saf. 2019;18(10):915-923. [Crossref]  [PubMed]
  15. Funada S, Kawaguchi T, Terada N, Negoro H, Tabara Y, Kosugi S, et al. Cross-sectional epidemiological analysis of the Nagahama study for correlates of overactive bladder: genetic and environmental considerations. J Urol. 2018;199(3):774778. [Crossref]  [PubMed]
  16. Gandi C, Sacco E. Pharmacological management of urinary incontinence: current and emerging treatment. Clin Pharmacol. 2021;13:209-223. [Crossref]  [PubMed]  [PMC]
  17. Karakeçeci A, Onur R. Aşırı aktif mesane tedavisinde karma etkili ajanların etki mekanizması ve avantajları. Kontinans ve Nöroüroloji Bülteni. 2016;3(2):71-74. [Crossref]
  18. Malhotra B, Sachse R, Wood N. Evaluation of drug-drug interactions with fesoterodine. Eur J Clin Pharmacol. 2009;65:551-560. [Crossref]  [PubMed]
  19. Witte LP, Mulder WM, de la Rosette JJ, Michel MC. Muscarinic receptor antagonists for overactive bladder treatment: does one fit all? Curr Opin Urol. 2009;19(1):13-19. [Crossref]  [PubMed]
  20. Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, et al. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br J Clin Pharmacol. 2011;72(2):235-246. [Crossref]  [PubMed]  [PMC]
  21. Staskin D, Kay G, Tannenbaum C, Goldman H, Bhashi K, Ling J, et al. Trospium chloride has no effect on memory testing and is assay undetectable in the central nervous system of older patients with overactive bladder. Int J Clin Pract. 2010;64(9):1294-1300. [Crossref]  [PubMed]
  22. Ohno T, Nakade S, Nakayama K, Kitagawa J, Ueda S, Miyabe H, et al. Absolute bioavailability of imidafenacin after oral administration to healthy subjects. Br J Clin Pharmacol. 2008;65(2):197-202. [Crossref]  [PubMed]  [PMC]
  23. Kanayama N, Kanari C, Masuda Y, Ohmori S, Ooie T. Drug-drug interactions in the metabolism of imidafenacin: role of the human cytochrome P450 enzymes and UDP-glucuronic acid transferases, and potential of imidafenacin to inhibit human cytochrome P450 enzymes. Xenobiotica. 2007;37(2):139-154. [Crossref]  [PubMed]
  24. Wuest M, Witte LP, Michel-Reher MB, Propping S, Braeter M, Strugala GJ, et al. The muscarinic receptor antagonist propiverine exhibits 1-adrenoceptor antagonism in human prostate and porcine trigonum. World J Urol. 2011;29(2):149-155. [Crossref]  [PubMed]  [PMC]
  25. Cornu J-N, Abrams P, Chapple CR, Dmochowski RR, Lemack GE, Michel MC, et al. A contemporary assessment of nocturia: definition, epidemiology, pathophysiology, and management-a systematic review and meta-analysis. Eur Urol. 2012;62(5):877-890. [Crossref]  [PubMed]
  26. Huang R, Tamalunas A, Waidelich R, Strittmatter F, Stief CG, Hennenberg M. Antagonism of 1-adrenoceptors by 3-adrenergic agonists: structure-function relations of different agonists in prostate smooth muscle contraction. Biochem Pharmacol. 2022;202:115148. [Crossref]  [PubMed]
  27. Kwon J, Kim DY, Cho KJ, Hashimoto M, Matsuoka K, Kamijo T, et al. Pathophysiology of overactive bladder and pharmacologic treatments including 3-adrenoceptor agonists-basic research perspectives. Int Neurourol J. 2024;28(Suppl 1):S2. [Crossref]  [PubMed]  [PMC]
  28. Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhães-Cardoso MT, Calejo I, et al. Inhibition of cholinergic neurotransmission by 3-adrenoceptors depends on adenosine release and A1-receptor activation in human and rat urinary bladders. Am J Physiol Renal Physiol. 2017;313(2):F388-F403. [Crossref]  [PubMed]
  29. Coelho A, Antunes-Lopes T, Gillespie J, Cruz F. Beta-3 adrenergic receptor is expressed in acetylcholine-containing nerve fibers of the human urinary bladder: an immunohistochemical study. Neurourol Urodyn. 2017;36(8):1972-1980. [Crossref]  [PubMed]
  30. Igawa Y, Aizawa N, Michel MC. 3-adrenoceptors in the normal and diseased urinary bladder-what are the open questions? Br J Pharmacol. 2019;176(14):2525-2538. [Crossref]  [PubMed]  [PMC]
  31. Andersson KE. Pharmacology: cardiovascular effects of mirabegron. Nat Rev Urol. 2017;14(10):587-588. [Crossref]  [PubMed]
  32. Wada N, Shimizu T, Takai S, Shimizu N, Tyagi P, Kakizaki H, et al. Combinational effects of muscarinic receptor inhibition and 3-adrenoceptor stimulation on neurogenic bladder dysfunction in rats with spinal cord injury. Neurourol Urodyn. 2017;36(4):1039-1045. [Crossref]  [PubMed]
  33. Wróbel A, Serefko A, Woźniak A, Kociszewski J, Szopa A, Wiśniewski R, et al. Duloxetine reverses the symptoms of overactive bladder co-existing with depression via the central pathways. Pharmacol Biochem Behav. 2020;189:172842. [Crossref]  [PubMed]
  34. Lee J, Moy S, Meijer J, Krauwinkel W, Sawamoto T, Kerbusch V, et al. Role of cytochrome P450 isoenzymes 3A and 2D6 in the in vivo metabolism of mirabegron, a 3-adrenoceptor agonist. Clin Drug Investig. 2013;33(6):429-440. [Crossref]  [PubMed]
  35. Rossanese M, Novara G, Challacombe B, Iannetti A, Dasgupta P, Ficarra V. Critical analysis of phase II and III randomized control trials evaluating efficacy and tolerability of a 3-adrenoceptor agonist (mirabegron) for overactive bladder. BJU Int. 2015;115(1):32-40. [Crossref]  [PubMed]
  36. Yamaguchi O, Marui E, Kakizaki H, Homma Y, Igawa Y, Takeda M, et al. Phase III, randomized, double-blind, placebo-controlled study of the 3-adrenoceptor agonist mirabegron, 50 mg once daily, in Japanese patients with overactive bladder. BJU Int. 2014;113(6):951-960. [Crossref]  [PubMed]
  37. Chapple C. Chapter 2: Pathophysiology of neurogenic detrusor overactivity and the symptom complex of "overactive bladder". Neurourol Urodyn. 2014;33(Suppl 3):S6-13. [Crossref]
  38. Müderrisoglu AE, Sakul AA, Murgas S, de la Rosette J, Michel MC. Association of diabetes, hypertension, and their combination with basal symptoms and treatment responses in overactive bladder patients. Front Pharmacol. 2023;14:1144470. [Crossref]  [PubMed]  [PMC]
  39. Wada N, Mizunaga M, Abe N, Miyauchi K, Kobayashi S, Ohtani M, et al. Comparison of mirabegron and vibegron for clinical efficacy and safety in female patients with overactive bladder: a multicenter prospective randomized crossover trial. World J Urol. 2024;42(1):113. [Crossref]  [PubMed]
  40. Yoshida M, Takeda M, Gotoh M, Nagai S, Kurose T. Vibegron, a novel potent and selective 3-adrenoreceptor agonist, for the treatment of patients with overactive bladder: a randomized, double-blind, placebo-controlled phase 3 study. Eur Urol. 2018;73(5):783-790. [Crossref]  [PubMed]
  41. Truss MC, Stief CG, Uckert S, Becker AJ, Wefer J, Schultheiss D, et al. Phosphodiesterase 1 inhibition in the treatment of lower urinary tract dysfunction: from bench to bedside. World J Urol. 2001;19(5):344-350. [Crossref]  [PubMed]
  42. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048. [Crossref]  [PubMed]  [PMC]
  43. Ma C, Zhang J, Cai Z, Xiong J, Li H. Defining the efficacy and safety of phosphodiesterase type 5 inhibitors with tamsulosin for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia with or without erectile dysfunction: a network meta-analysis. Biomed Res Int. 2020;2020:1419520. [Crossref]  [PubMed]  [PMC]
  44. Matsuo T, Miyata Y, Araki K, Mukae Y, Otsubo A, Ohba K, et al. Efficacy of tadalafil therapy and changes in oxidative stress levels in male patients with lower urinary tract symptoms and overactive bladder. J Urol. 2020;12(1):47-53. [Crossref]  [PubMed]  [PMC]
  45. Yamanishi T, Kaga K, Sakata K, Yokoyama T, Kageyama S, Fuse M, Tokunaga S. A randomized controlled study of the efficacy of tadalafil monotherapy versus combination of tadalafil and mirabegron for the treatment of persistent overactive bladder symptoms in men presenting with lower urinary tract symptoms (CONTACT Study). Neurourol Urodyn. 2020;39(2):804-812. [Crossref]  [PubMed]  [PMC]
  46. Arcaniolo D, Conquy S, Tarcan T. Flavoxate: present and future. Eur Rev Med Pharmacol Sci. 2015;19(5):719731.
  47. Matarazzo MG, Caruso S, Giunta G, Valenti G, Sarpietro G, Cianci A. Does vaginal estriol make urodynamic changes in women with overactive bladder syndrome and genitourinary syndrome of menopause? Eur J Obstet Gynecol Reprod Biol. 2018;222:75-79. [Crossref]  [PubMed]
  48. Murat U, Ömer G, Cüneyd ÖZ, Oktay D, Tufan T. Duloxetine in the treatment of women with urinary incontinence: a systematic review and meta-analysis of efficacy data from randomized controlled clinical trials. J Urol Surg. 2023;10(1):1-8. [Crossref]
  49. Kent CN, Park C, Lindsley CW. Classics in chemical neuroscience: Baclofen. ACS Chem Neurosci. 2020;11(12):17401755. [Crossref]  [PubMed]
  50. Del Fabro AS, Mejia M, Nemunaitis G. An investigation of the relationship between autonomic dysreflexia and intrathecal baclofen in patients with spinal cord injury. J Spinal Cord Med. 2018;41(1):102-105. [Crossref]  [PubMed]  [PMC]