Photodynamic Therapy for Cancer

tibbibiyolojiozel-2-2-24kapak

Gürcan GÜNAYDINa
aHacettepe University Cancer Institute, Department of Basic Oncology, Ankara, Türkiye

Günaydın G. Photodynamic therapy for cancer. In: Yar Sağlam AS, ed. Innovative Approaches in Cancer Diagnosis and Treatment. 1st ed. Ankara: Türkiye Klinikleri; 2024. p.83-8.

Makale Dili: EN

ABSTRACT
Photodynamic therapy serves as a therapeutic method for specific cancer types and noncancerous conditions. It involves the use of specialized substances acting as photosensitizers. These photosensitizers, upon light activation, produce reactive oxygen species, aiding in functions such as tumor cell destruction. The inactive form of the photosensitizer can be distributed throughout the body and later activated at specific sites. Clinical trials have evaluated numerous photosensitizers, yet certain challenges and limitations may hinder the utilization of specific photodynamic therapy agents. Despite these obstacles, photodynamic therapy holds promise in treatment applications for achieving favorable outcomes in cancer. Therefore, continued development of photodynamic therapy techniques and treatment strategies is essential.

Keywords: Photochemotherapy; precision medicine; nanotechnology; neoplasms; photosensitizing agents

Referanslar

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7-33. [Crossref]
  2. Menzies AM, Haydu LE, Carlino MS, Azer MW, Carr PJ, Kefford RF, et al. Inter- and intra-patient heterogeneity of response and progression to targeted therapy in metastatic melanoma. PLoS One. 2014;9(1):e85004. [Crossref]  [PubMed]  [PMC]
  3. Gunaydin G, Altundag K. Ductal carcinoma in situ and bilateral atypical ductal hyperplasia in a 23-year-old man with gynecomastia. Am Surg. 2011; 77(9):1272-3. [Crossref]  [PubMed]
  4. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535-45. [Crossref]  [PubMed]  [PMC]
  5. Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem. 2021;9:686303. [Crossref]  [PubMed]  [PMC]
  6. Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, et al. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med. 2006;38(5):468-81. [Crossref]  [PubMed]
  7. Raab O. Uber die wirkung fluoreszierender stoffe auf infusoria. Zeitschrift fur Biologie 1900;39: 524-46.
  8. Niculescu AG, Grumezescu AM. Photodynamic Therapy-An Up-to-Date Review. Appl. Sci. 2021;11:3626. [Crossref]
  9. von Tappeiner H. Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe) Ergebnisse der Physiologie. 1909;8:698-741. [Crossref]
  10. Hamblin MR. Fullerenes as photosensitizers in photodynamic therapy: pros and cons. Photochem Photobiol Sci. 2018;17(11):1515-33. [Crossref]  [PubMed]  [PMC]
  11. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436-50. [Crossref]  [PubMed]  [PMC]
  12. Warrier A, Mazumder N, Prabhu S, Satyamoorthy K, Murali TS. Photodynamic therapy to control microbial biofilms. Photodiagnosis Photodyn Ther. 2021;33:102090. [Crossref]  [PubMed]
  13. Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, et al. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne). 2021;8:642609. [Crossref]  [PubMed]  [PMC]
  14. Oyim J, Omolo CA, Amuhaya EK. Photodynamic Antimicrobial Chemotherapy: Advancements in Porphyrin-Based Photosensitize Development. Front Chem. 2021;9:635344. [Crossref]  [PubMed]  [PMC]
  15. Lipson RL, Baldes EJ, Olsen AM. Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J Thorac Cardiovasc Surg. 1961; 42:623-9. [Crossref]  [PubMed]
  16. Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508-16. [Crossref]  [PubMed]
  17. Moan J. Porphyrin photosensitization and phototherapy. Photochem Photobiol. 1986;43(6):681-90. [Crossref]  [PubMed]
  18. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-64. [Crossref]  [PubMed]  [PMC]
  19. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889-905. [Crossref]  [PubMed]  [PMC]
  20. Dougherty TJ. A brief history of clinical photodynamic therapy development at Roswell Park Cancer Institute. J Clin Laser Med Surg. 1996;14(5):219-21. [Crossref]  [PubMed]
  21. Usuda J, Kato H, Okunaka T, Furukawa K, Tsutsui H, Yamada K, et al. Photodynamic therapy (PDT) for lung cancers. J Thorac Oncol. 2006;1(5):489-93. [Crossref]  [PubMed]
  22. Kato H. The History of the Study of Photodynamic Therapy (PDT) and Photodynamic Diagnosis (PDD) in the Department of Surgery, Tokyo Medical University. Photodiagn. Photodyn. Ther. 2004;1:107-10. [Crossref]
  23. Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283-93. [Crossref]  [PubMed]  [PMC]
  24. Pass HI. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst. 1993;85(6):443-56. [Crossref]  [PubMed]
  25. Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer--a review of current status and future promise. Nat Clin Pract Urol. 2009; 6(1):18-30. [Crossref]  [PubMed]
  26. Turan IS, Gunaydin G, Ayan S, Akkaya EU. Molecular demultiplexer as a terminator automaton. Nat Commun. 2018;9(1):805. [Crossref]  [PubMed]  [PMC]
  27. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1-21. [Crossref]  [PubMed]
  28. Dolmans DE, Kadambi A, Hill JS, Waters CA, Robinson BC, Walker JP, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002; 62(7):2151-6.
  29. Krammer B. Vascular effects of photodynamic therapy. Anticancer Res. 2001; 21(6B):4271-7.
  30. Pamuk AE, Gedik ME, Sutay Suslu N, Gunaydin G. Candidate Angiogenesis-Related Biomarkers in Patients with Laryngeal Carcinoma (AngLaC): A Prospective Cohort Study. Otolaryngol Head Neck Surg. 2023;168(6):1433-42. [Crossref]  [PubMed]
  31. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn Ther. 2005;2(2):91-106. [Crossref]  [PubMed]
  32. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther. 2005;2(1):1-23. [Crossref]  [PubMed]
  33. Ji HT, Chien LT, Lin YH, Chien HF, Chen CT. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Mol Cancer. 2010;9:91. [Crossref]  [PubMed]  [PMC]
  34. Deliktas O, Gedik ME, Koc I, Gunaydin G, Kiratli H. Modulation of AMPK Significantly Alters Uveal Melanoma Tumor Cell Viability. Ophthalmic Res. 2023;66(1):1230-44. [Crossref]  [PubMed]  [PMC]
  35. Yazici SE, Gedik ME, Leblebici CB, Kosemehmetoglu K, Gunaydin G, Dogrul AB. Can endocan serve as a molecular "hepatostat" in liver regeneration? Mol Med. 2023;29(1):29. [Crossref]  [PubMed]  [PMC]
  36. Oruc M, Gedik ME, Uner M, Ulug E, Unal RN, Gunaydin G, et al. Effectiveness of metformin for the reversal of cold-ischemia-induced damage in hepatosteatosis. Clin Res Hepatol Gastroenterol. 2024;48(4):102314. [Crossref]  [PubMed]
  37. Beduk Esen CS, Gedik ME, Canpinar H, Yedekci FY, Yildiz F, Gunaydin G, et al. Radiosensitising Effects of Metformin Added to Concomitant Chemoradiotherapy with Cisplatin in Cervical Cancer. Clin Oncol (R Coll Radiol). 2023;35(11):744-55. [Crossref]  [PubMed]
  38. Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem. 2021;9:691697. [Crossref]  [PubMed]  [PMC]
  39. Karaman O, Almammadov T, Emre Gedik M, Gunaydin G, Kolemen S, Gunbas G. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem. 2019;14(22):1879-86. [Crossref]  [PubMed]
  40. Ayan S, Gunaydin G, Yesilgul-Mehmetcik N, Gedik ME, Seven O, Akkaya EU. Proof-of-principle for two-stage photodynamic therapy: hypoxia triggered release of singlet oxygen. Chem Commun (Camb). 2020;56(94):14793-6. [Crossref]  [PubMed]
  41. Gunaydin G, Gedik ME. Effects of cellular energy homeostasis modulation through AMPK on regulation of protein translation and response to hypoxiaTurkish Journal of Biochemistry. 2019;44:611-20. [Crossref]
  42. Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol. 1991;53(4):549-53. [Crossref]  [PubMed]
  43. Gündüz EÖ, Gedik ME, Günaydın G, Okutan E. Amphiphilic Fullerene-BODIPY Photosensitizers for Targeted Photodynamic Therapy. ChemMedChem. 2022;17(6):e202100693. [Crossref]  [PubMed]
  44. Öztürk Gündüz E, Atajanov R, Gedik ME, Tanrıverdi Eçik E, Günaydın G, Okutan E. BODIPY-GO nanocomposites decorated with a biocompatible branched ethylene glycol moiety for targeted PDT. Dalton Trans. 2023;52(17):5466-77. [Crossref]  [PubMed]
  45. Öztürk Gündüz E, Tasasız B, Gedik ME, Günaydın G, Okutan E. NI-BODIPY-GO Nanocomposites for Targeted PDT. ACS Omega. 2023;8(9):8320-31. [Crossref]  [PubMed]  [PMC]
  46. Busch TM, Wileyto EP, Emanuele MJ, Del Piero F, Marconato L, Glatstein E, Koch CJ. Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen. Cancer Res. 2002;62(24):7273-9.
  47. Gunaydin G. CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Front Oncol. 2021;11:668349. [Crossref]  [PubMed]  [PMC]
  48. Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F, et alCancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 2019;9(1):3172. [Crossref]  [PubMed]  [PMC]
  49. Gunaydin G, Kesikli SA, Guc D. Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology. 2015;4(9):e1034918. [Crossref]  [PubMed]  [PMC]
  50. Dolen Y, Gunaydin G, Esendagli G, Guc D. Granulocytic subset of myeloid derived suppressor cells in rats with mammary carcinoma. Cell Immunol. 2015; 295(1):29-35. [Crossref]  [PubMed]
  51. Gok Yavuz B, Gunaydin G, Kosemehmetoglu K, Karakoc D, Ozgur F, Guc D. The effects of cancer-associated fibroblasts obtained from atypical ductal hyperplasia on anti-tumor immune responses. Breast J. 2018;24(6):1099-101. [Crossref]  [PubMed]
  52. Gunaydin G, Dolen Y, Kesikli SA. Fibroblast-derived CCL2 induces cancer stem cells--letter. Cancer Res. 2013;73(2):1031. [Crossref]  [PubMed]
  53. Yahsi B, Gunaydin G. Immunometabolism - The Role of Branched-Chain Amino Acids. Front Immunol. 2022;13:886822. [Crossref]  [PubMed]  [PMC]
  54. Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020; 17(11):657-74. [Crossref]  [PubMed]
  55. Yilmaz MT, Gok A, Gedik ME, Caglayan A, Yedekci FY, Aydin Dilsiz S, et al. The Impact of Dose Rate on the Tumor Microenvironment Using Flattening-filter-free Beams. Clin Oncol (R Coll Radiol). 2024;36(6):390-8. [Crossref]  [PubMed]
  56. Esim O, Gedik ME, Dogan AL, Gunaydin G, Hascicek C. Development of carboplatin loaded bovine serum albumin nanoparticles and evaluation of its effect on an ovarian cancer cell line. Journal of Drug Delivery Science and Technology. 2021;64:102655. [Crossref]
  57. Esim O, Hascicek C. Gedik ME, Gunaydin G, Dogan AL. Carboplatin and decitabine loaded lipid-coated albumin nanoparticles for an efficient treatment of platinum-resistant ovarian cancer. Journal of Drug Delivery Science and Technology. 2022;76:103801. [Crossref]
  58. Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev. 2021;50(6):4185-219. [Crossref]  [PubMed]
  59. Shen Z, Ma Q, Zhou X, Zhang G, Hao G, Sun Y, et al. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 2021;13:39. [Crossref]
  60. Bil J, Wlodarski P, Winiarska M, Kurzaj Z, Issat T, Jozkowicz A, e al. 2010. Photodynamic therapy-driven induction of suicide cytosine deaminase gene. Cancer Lett 290:216-22. [Crossref]  [PubMed]
  61. Çakan E, Gunaydin G. Activation induced cytidine deaminase: An old friend with new faces. Front Immunol. 2022;13:965312. [Crossref]  [PubMed]  [PMC]
  62. Borgia F, Giuffrida R, Caradonna E, Vaccaro M, Guarneri F, Cannavò SP. Early and Late Onset Side Effects of Photodynamic Therapy. Biomedicines. 2018;6(1):12. [Crossref]  [PubMed]  [PMC]
  63. Turan IS, Yildiz D, Turksoy A, Gunaydin G, Akkaya EU. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light. Angew Chem Int Ed Engl. 2016;55(8):2875-8. [Crossref]  [PubMed]