POTENTIAL EFFECTS OF TRANSCRANIAL ALTERNATING CURRENT STIMULATION ON MEMORY FUNCTIONS: NEW PERSPECTIVES

Tuba Aktürk

Maastricht University, Faculty of Psychology & Neuroscience, Department of Cognitive Neuroscience, Section Brain Stimulation and Cognition, Maastricht, Netherlands

Aktürk T. Potential Effects of Transcranial Alternating Current Stimulation on Memory Functions: New Perspectives. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.119130.

ABSTRACT

The basis of cognitive abilities is closely related to the correct and proper functioning of memory processes. It is known that impairment in memory processes is generally not isolated, but rather causes impairment in multiple domains. Conversely, it is known that memory processes are affected in many diseases that are not mainly defined as a memory disorder. Although the current literature has shown significant advances and developments in memory studies, intervention in memory processes and noninvasive modulation of memory processes based on the findings obtained so far is an area that is open to development and is in need. In this context, transcranial electrical stimulation appears as a noninvasive brain stimulation method based on manipulating cognitive processes by interfering with cortical activation. One of the most common forms is transcranial alternating current stimulation (tACS). tACS stands out as a method that can specifically intervene in the ongoing oscillatory activity of the brain on a frequency basis. In this way, external manipulation of endogenous brain oscillations offers the opportunity to establish and test the connection between brain oscillations and cognitive processes such as memory. In this context, throughout this chapter, the potential effects of different tACS applications on memory modulation and their possible clinical applications will be discussed with examples from the literature.

Keywords: Cognitive neuroscience; Electric stimulation; Transcranial direct current stimulation; Memory; Brain waves; Electroencephalography

Referanslar

  1. Weintraub S. Neuropsychological Assessment of Mental State. In: Mesulam MM, ed. Principles of Behavioral and Cognitive Neurology. Second edi. Oxford University Press; 2000:121174. [Crossref]
  2. Antal A, Herrmann CS. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plast. 2016;2016. [Crossref]  [PubMed]  [PMC]
  3. Lefaucheur JP, Antal A, Ayache SS, et al. Evidencebased guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysi ology. 2017;128(1):5692. [Crossref]  [PubMed]
  4. Veniero D, Stru ber D, Thut G, Herrmann CS. Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing.; 2016. [Crossref]
  5. Vosskuhl J, Strüber D, Herrmann CS. Noninvasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations. Front Hum Neurosci. 2018;12(May):119. [Crossref]  [PubMed]  [PMC]
  6. Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alter nating current stimulation. Trends Cogn Sci. 2023;27(2):189205. [Crossref]  [PubMed]  [PMC]
  7. Mesulam MM. Principles of Behavioral and Cognitive Neurology. second edi. (MMarsel Mesulam, ed.). Oxford University Press; 2000. [Crossref]  [PMC]
  8. Baddeley AD. Working Memory Components of Working Memory Individual Differences in Working Memory The Slave Systems of Working Memory. Science (1979). 1992;255(ii):556559. [Crossref]  [PubMed]
  9. Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 1998;20(3):445468. [Crossref]  [PubMed]
  10. Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44(1):453495. [Crossref]  [PubMed]
  11. Baddeley A, Eysenck MW, Anderson MC. Memory.; 2015. [Crossref]
  12. Brown SC, Craik FIM. Encoding and retrieval of information. In: Tulving E, Craik FIM, eds. The Oxford Handbook of Memory. Oxford University Press; 2000:93107. [Crossref]  [PMC]
  13. Levitan I, Kaczmarek L. The Neuron: Cell and Molecular Biology. Oxford University Press; 2002. [Crossref]
  14. Sarmiento CI, SanJuan D, Prasath VBS. Letter to the Editor: Brief history of transcranial direct current stimulation (tDCS): from electric fishes to microcontrollers. Psychol Med. 2016;46(15):32593261. [Crossref]  [PubMed]
  15. Bikson M, Esmaeilpour Z, Adair D, et al. Transcranial electrical stimulation nomenclature. Brain Stimul. 2019;12(6). [Crossref]  [PubMed]  [PMC]
  16. Antal A, Herrmann CS. Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plast. 2016;2016. [Crossref]  [PubMed]  [PMC]
  17. Veniero D, Stru ber D, Thut G, Herrmann CS. Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing.; 2016. [Crossref]
  18. Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7(June):14. [Crossref]
  19. Ali MM, Sellers KK, Frohlich F. Transcranial Alternating Current Stimulation Modulates LargeScale Cortical Network Activity by Network Resonance. Journal of Neuroscience. 2013;33(27):1126211275. [Crossref]  [PubMed]  [PMC]
  20. Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with noninvasive brain stimulation. Nat Neurosci. 2018;21(2):174187. [Crossref]  [PubMed]
  21. Cecere R, Rees G, Romei V. Individual Differences in Alpha Frequency Drive Crossmodal Illusory Perception. Current Biology. 2015;25(2):231235. [Crossref]  [PubMed]  [PMC]
  22. Moisa M, Polania R, Grueschow M, Ruff CC. Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations. Journal of Neuroscience. 2016;36(47). [Crossref]  [PubMed]  [PMC]
  23. Minami S, Amano K. Illusory Jitter Perceived at the Frequency of Alpha Oscillations. Current Biology. 2017;27(15):23442351.e4. [Crossref]  [PubMed]
  24. Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: From correlation to causality. International Journal of Psychophysiology. 2016;103:1221. [Crossref]  [PubMed]
  25. Berntsen MB, Cooper NR, Hughes G, Romei V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behavioural Brain Research. 2019;361(December 2018):3949. [Crossref]  [PubMed]
  26. Turi Z, Paulus W, Antal A. Functional neuroimaging and transcranial electrical stimulation. Clin EEG Neurosci. 2012;43(3):200208. [Crossref]  [PubMed]
  27. Vosskuhl J, Huster RJ, Herrmann CS. Increase in shortterm memory capacity induced by downregulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9(May):110. [Crossref]  [PubMed]  [PMC]
  28. Meng A, Kaiser M, de Graaf TA, et al. Transcranial alternating current stimulation at theta frequency to left parietal cortex impairs associative, but not perceptual, memory encoding. Neurobiol Learn Mem. 2021;182:120. [Crossref]  [PubMed]
  29. Schuhmann T, Kemmerer SK, Duecker F, et al. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One. 2019;14(11). [Crossref]  [PubMed]  [PMC]
  30. Kemmerer SK, Sack AT, de Graaf TA, ten Oever S, De Weerd P, Schuhmann T. Frequencyspecific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Res. 2022;1782:147834. [Crossref]  [PubMed]
  31. Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex. Current Biology. 2016;26(12):15131521. [Crossref]  [PubMed]
  32. Diedrich L, Kolhoff HI, Bergmann C, Bähr M, Antal A. Boosting working memory in the elderly: driving prefrontal theta-gamma coupling via repeated neuromodulation. Geroscience. Published online 2024. [Crossref]  [PubMed]  [PMC]
  33. Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Current Biology. 2012;22(5):403407. [Crossref]  [PubMed]  [PMC]
  34. Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W. The Importance of Timing in Segregated Theta PhaseCoupling for Cognitive Performance. Current Biology. 2012;22(14):13141318. [Crossref]  [PubMed]
  35. Polanía R, Moisa M, Opitz A, Grueschow M, Ruff CC. The precision of valuebased choices depends causally on frontoparietal phase coupling. Nat Commun. 2015;6. [Crossref]  [PubMed]  [PMC]
  36. Violante IR, Li LM, Carmichael DW, et al. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017;6. [Crossref]  [PubMed]  [PMC]
  37. Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22(5):820827. [Crossref]  [PubMed]  [PMC]
  38. Ozen S, Sirota A, Belluscio MA, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. Journal of Neuroscience. 2010;30(34):1147611485. [Crossref]  [PubMed]  [PMC]
  39. Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 2012;108(8):21732178. [Crossref]  [PubMed]  [PMC]
  40. Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: Level of control over oscillatory network activity. Front Cell Neurosci. 2015;9(DEC). [Crossref]  [PubMed]  [PMC]
  41. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610613. [Crossref]  [PubMed]
  42. Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial Electrical Stimulation Accelerates Human Sleep Homeostasis. PLoS Comput Biol. 2013;9(2). [Crossref]  [PubMed]  [PMC]
  43. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Current Biology. 2011;21(14):11761185. [Crossref]  [PubMed]  [PMC]
  44. Hanslmayr S, Matuschek J, Fellner MC. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Current Biology. 2014;24(8):904909. [Crossref]  [PubMed]
  45. Zaehle T, Rach S, Herrmann CS. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS One. 2010;5(11):17. [Crossref]  [PubMed]  [PMC]
  46. Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (atACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8(3):499508. [Crossref]  [PubMed]  [PMC]
  47. Helfrich RF, Schneider TR, Rach S, TrautmannLengsfeld SA, Engel AK, Herrmann CS. Entrainment of Brain Oscillations by Transcranial Alternating Current Stimulation. Current Biology. 2014;24(3):333339. [Crossref]  [PubMed]
  48. Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS. Good vibrations: Oscillatory phase shapes perception. Neuroimage. 2012;63(2):771778. [Crossref]  [PubMed]
  49. Strüber D, Rach S, TrautmannLengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27(1):158171. [Crossref]  [PubMed]
  50. Kirov R, Weiss C, Siebner HR, Born J, Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci U S A. 2009;106(36):1546015465. [Crossref]  [PubMed]  [PMC]
  51. Marshall L, Kirov R, Brade J, Mölle M, Born J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One. 2011;6(2). [Crossref]  [PubMed]  [PMC]
  52. Sahlem GL, Badran BW, Halford JJ, et al. Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study. Brain Stimul. 2015;8(3):528534. [Crossref]  [PubMed]  [PMC]
  53. Herrmann CS, Strüber D. What Can Transcranial Alternating Current Stimulation Tell Us About Brain Oscillations? Curr Behav Neurosci Rep. 2017;4(2):128137. [Crossref]
  54. Wischnewski M, Schutter DJLG. Aftereffects of transcranial alternating current stimulation on evoked delta and theta power. Clinical Neurophysiology. 2017;128(11):22272232. [Crossref]  [PubMed]
  55. Marshall L, Binder S. Contribution of transcranial oscillatory stimulation to research on neural networks: An emphasis on hippocamponeocortical rhythms. Front Hum Neurosci. 2013;0(SEP):614. [Crossref]  [PubMed]  [PMC]
  56. Fregni F, Boggio PS, Nitsche M, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):2330. [Crossref]  [PubMed]
  57. Jaušovec N, Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol. 2014;96(1):4247. [Crossref]  [PubMed]
  58. Jaušovec N, Jaušovec K, Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol (Amst). 2014;146(1):16. [Crossref]  [PubMed]
  59. Vosskuhl J, Huster RJ, Herrmann CS. Increase in shortterm memory capacity induced by downregulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9(MAY):110. [Crossref]  [PubMed]  [PMC]
  60. Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16(3):117. [Crossref]  [PubMed]  [PMC]
  61. Aktürk T, de Graaf TA, Güntekin B, Hanoğlu L, Sack AT. Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEGtACS. Scientific Reports 2022 12:1. 2022;12(1):114. [Crossref]  [PubMed]  [PMC]
  62. Bjekic J, Živanović M, Paunovic D, et al. Personalized Frequency Modulated Transcranial Electrical Stimulation for Associative Memory Enhancement. Brain Sci. 2022, 12,472. Brain Sci. 2022;12(4). [Crossref]  [PubMed]  [PMC]
  63. Wang Y, De Weerd P, Sack AT, van de Ven V. Distinct effects of slow and fast theta tACS in enhancing temporal memory. Imaging Neuroscience. 2024;2:114. [Crossref]  [PubMed]  [PMC]
  64. Lisman J, Idiart M. Storage of 7 +/2 shortterm memories in oscillatory subcycles. Science (1979). 1995;267(5203):15121515. [Crossref]  [PubMed]
  65. Lisman JE, Jensen O. The θθ neural code. Neuron. 2013;77(6):10021016. [Crossref]  [PubMed]  [PMC]
  66. Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci. 2019;22(5). [Crossref]  [PubMed]  [PMC]
  67. Vosskuhl J, Huster RJ, Herrmann CS. Increase in shortterm memory capacity induced by downregulating individual theta frequency via transcranial alternating current stimulation. Front Hum Neurosci. 2015;9(MAY):110. [Crossref]  [PubMed]  [PMC]
  68. Alekseichuk I, Pabel SC, Antal A, Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor Neurol Neurosci. 2017;35(2):147158. [Crossref]  [PubMed]
  69. Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16(3). [Crossref]  [PubMed]  [PMC]
  70. Wolinski N, Cooper NR, Sauseng P, Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16(3). [Crossref]  [PubMed]  [PMC]
  71. Başar E. Brain oscillations in neuropsychiatric disease. Di alogues Clin Neurosci. 2013;15(3):291300. [Crossref]  [PubMed]  [PMC]
  72. Başar E, SchmiedtFehr C, Mathes B, et al. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer's disease, and bipolar disorder. International Journal of Psychophysiology. 2016;103. [Crossref]  [PubMed]
  73. Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77(12):10891097. [Crossref]  [PubMed]  [PMC]
  74. Calderone DJ, Lakatos P, Butler PD, Castellanos FX. Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci. 2014;18(6):300309. [Crossref]  [PubMed]  [PMC]
  75. Fröhlich F, Sellers KK, Cordle AL. Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother. 2014;15(2):145167. [Crossref]  [PubMed]  [PMC]
  76. de Graaf TA, Thomson A, Duecker F, Sack AT. The Various Forms of Noninvasive Brain Stimulation and Their Clinical Relevance. Modern CNS Drug Discovery. Published online 2021:103113. [Crossref]
  77. Pérez C, Leite J, Carvalho S, Fregni F. Transcranial Electrical Stimulation (tES) for the Treatment of Neuropsychiatric Disorders Across Lifespan.
  78. Del Felice A, Magalini A, Masiero S. Slowoscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool. Brain Stimul. 2015;8(3):567573. [Crossref]  [PubMed]
  79. Göder R, Baier PC, Beith B, et al. Effects of transcranial direct current stimulation during sleep on memory performance in patients with schizophrenia. Schizophr Res. 2013;144(13):153154. [Crossref]  [PubMed]
  80. PrehnKristensen A, Munz M, Göder R, et al. Transcranial Oscillatory Direct Current Stimulation During Sleep Improves Declarative Memory Consolidation in Children With Attentiondeficit/hyperactivity Disorder to a Level Comparable to Healthy Controls. Brain Stimul. 2014;7(6):793799. [Crossref]  [PubMed]
  81. Munz MT, PrehnKristensen A, Thielking F, Mölle M, Göder R, Baving L. Slow oscillating transcranial direct current stimulation during nonrapid eye movement sleep improves behavioral inhibition in attentiondeficit/hyperactivity disorder. Front Cell Neurosci. 2015;9(August):18. [Crossref]  [PubMed]  [PMC]
  82. Gall C, Silvennoinen K, Granata G, et al. Noninvasive electric current stimulation for restoration of vision after unilateral occipital stroke. Contemp Clin Trials. 2015;43:231236. [Crossref]  [PubMed]
  83. Schmidt S, Mante A, Rönnefarth M, Fleischmann R, Gall C, Brandt SA. Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: A twoweek repeated session alternating current stimulation study. Brain Stimul. 2013;6(1):8793. [Crossref]  [PubMed]
  84. Angelakis E, Liouta E, Andreadis N, et al. Transcranial alternating current stimulation reduces symptoms in intractable idiopathic cervical dystonia: A case study. Neurosci Lett. 2013;533(1):3943. [Crossref]  [PubMed]
  85. Del Felice A, Castiglia L, Formaggio E, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson's disease: A randomized crossover trial. Neuroimage Clin. 2019;22(January):101768. [Crossref]  [PubMed]  [PMC]
  86. Hess CW. Modulation of corticalsubcortical networks in Parkinson's disease by applied field effects. Front Hum Neurosci. 2013;(SEP). [Crossref]  [PubMed]  [PMC]
  87. Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B. Corticomuscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson's disease. Front Hum Neurosci. 2014;7(JAN). [Crossref]  [PubMed]  [PMC]
  88. Brittain JS, ProbertSmith P, Aziz TZ, Brown P. Tremor Suppression by Rhythmic Transcranial Current Stimulation. Current Biology. 2013;23(5):436440. [Crossref]  [PubMed]  [PMC]