PROBLEMSOLVING STRATEGIES: FUNDAMENTAL CONCEPTS AND CHANGES IN THE AGING PROCESS

Mevhibe Sarıcaoğlu

İstanbul Medipol University, Vocational School of Health Services, Program of Electroneurophysiology, İstanbul, Türkiye

Sarıcaoğlu M. ProblemSolving Strategies: Fundamental Concepts and Changes in the Aging Process. In: Hanoğlu L, editor. From Neuroscience Laboratory to Neurology Clinic. 1st ed. Ankara: Türkiye Klinikleri; 2025. p.8391.

ABSTRACT

This section, titled “Problem and ProblemSolving Strategies,” discusses the definition of a problem, solution strategies, and relevant neuroimaging studies. A problem is defined as a question or situation requiring a solution. The problemsolving process includes identifying the problem, applying strategies, and reaching a conclusion. Solution methods vary by question type, and different strategies are employed. Three main problemsolving strategies are identified. The first strategy is an analytical process involving arithmetic questions where individuals must perceive numbers, apply rules, and follow operation steps. Verification can also be done by retracing these steps. The second strategy relies on memory recall, where solutions involve retrieving information from shortor longterm memory, particularly useful in general knowledge questions. The third strategy includes insightbased problems that are solved with a sudden “Aha” or “Eureka” moment, where the solution is reached intuitively without a fully explainable path. Brain activation varies with each strategy. For arithmetic questions, the triple code model is activated: numbers, quantities, and verbal information are processed in distinct brain regions. For instance, processing number symbols activates the inferior ventral occipitotemporal region, quantity information engages the inferior parietal region, and verbal information activates the left perisylvian area. General knowledge questions activate various brain areas involved in encoding and retrieval, such as the hippocampus, parahippocampal regions, temporal lobes, and ventral parietal and frontal regions. For insightbased questions, a broader activation occurs in the prefrontal, temporal, parietal, and occipital lobes, with the DLPFC, middle temporal gyrus, and anterior cingulate cortex actively engaged. This section also explores how age affects problemsolving abilities. According to Horn and Cattell’s intelligence theory, there is a shift from fluid to crystallized intelligence as we age. Fluid intelligence, predominant in youth, is the capacity to think logically and solve novel problems, while crystallized intelligence relies on accumulated knowledge and is more common in older adults. Research indicates that fluid intelligence decreases with age as working memory and processing speed decline. However, crystallized intelligence tends to remain stable, enabling the elderly to use experiencebased knowledge. The brain’s adaptability and compensatory mechanisms also help maintain problemsolving abilities despite agerelated changes.

Keywords: Problemsolving strategies; Artihmetic questions; General knowledge questions; Insight questions; Neuroimaging; Aging

Referanslar

  1. Sarathy V. Real World ProblemSolving. Front Hum Neurosci. 2018;12:261. [Crossref]  [PubMed]  [PMC]
  2. Sprugnoli G, Rossi S, Emmendorfer A, Rossi A, Liew SL, Tatti E et al. Neural correlates of Eureka moment. Intelligence. 2017;62:99118. [Crossref]
  3. Binder JR, Desai RH. The neurobiology of semantic memory. Trends Cogn Sci. 2011;15(11):52736. [Crossref]  [PubMed]  [PMC]
  4. Chuderski A, Jastrzębski J. Much ado about aha!: Insight problem solving is strongly related to working memory capacity and reasoning ability. J Exp Psychol Gen. 2018;147(2):25781. [Crossref]  [PubMed]
  5. Sandkühler S, Bhattacharya J. Deconstructing insight: EEG correlates of insightful problem solving. PLoS One. 2008;3(1):e1459. [Crossref]  [PubMed]  [PMC]
  6. Liu J, Li J, Peng W, Feng M, Luo Y. EEG correlates of math anxiety during arithmetic problem solving: Implication for attention deficits. Neurosci Lett. 2019;703:1917. [Crossref]  [PubMed]
  7. Subramaniam K, Kounios J, Parrish TB, JungBeeman M. A brain mechanism for facilitation of insight by positive affect. J Cogn Neurosci. 2009;21(3):41532. [Crossref]  [PubMed]
  8. Arsalidou M, Taylor MJ. Is 2+2=4? Metaanalyses of brain areas needed for numbers and calculations. Neuroimage. 2011;154(3):238293. [Crossref]  [PubMed]
  9. Martin A. The representation of object concepts in the brain. Ann. Rev. Psychol. 2007;58:25-45. [Crossref]  [PubMed]
  10. Soltanlou M, Artemenko C, Ehlis AC, Huber S, Fallgatter AJ, Dresler T et al. Reduction but no shift in brain activation after arithmetic learning in children: A simultaneous fNIRSEEG study. Sci Rep. 2018;8(1):1707. [Crossref]  [PubMed]  [PMC]
  11. Artemenko C. Developmental frontoparietal shift of brain activation during mental arithmetic across the lifespan: A registered report protocol. PLoS One. 2021;16(8):e0256232. [Crossref]  [PubMed]  [PMC]
  12. Harmony T. The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 2013;7:83. [Crossref]  [PubMed]  [PMC]
  13. Roslan NS, Amin HU, Izhar LI, Saad MNM, Sivapalan S. Role of EEG delta and beta oscillations during problem solving tasks. 6th International Conference on Intelligent and Advanced Systems (ICIAS). 2016;14. [Crossref]
  14. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: metaanalytic evidence. J. Physiol. 2015;109(1-3):315. [Crossref]  [PubMed]  [PMC]
  15. Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):97687. [Crossref]  [PubMed]
  16. Renoult L, Irish M, Moscovitch M, Rugg MD. From Knowing to Remembering: The SemanticEpisodic Distinction. Trends Cogn Sci. 2019;23(12):104157. [Crossref]  [PubMed]
  17. Rissman J, Wagner AD. Distributed representations in memory: insights from functional brain imaging. Annu Rev Psychol. 2012;63:10128. [Crossref]  [PubMed]  [PMC]
  18. Kuhl BA, Chun MM. Successful remembering elicits eventspecific activity patterns in lateral parietal cortex. J Neurosci. 2014;34(23):805160. [Crossref]  [PubMed]  [PMC]
  19. Koechlin E, Hyafil A. Anterior prefrontal function and the limits of human decisionmaking. Science. 2007;318:594-8. [Crossref]  [PubMed]
  20. Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain. 2001;124:84981. [Crossref]  [PubMed]
  21. Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S. What does delta band tell us about cognitive processes: A mental calculation study. Neurosci. Lett. 2010;483(1): 115. [Crossref]  [PubMed]
  22. Lega BC, Jacobs J, Kahana M. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus. 2012;22(4):74861. [Crossref]  [PubMed]
  23. Razumnikova OM. Creativity related cortex activity in the remote associates task. Brain Res Bull. 2007;73(13):96102. [Crossref]  [PubMed]
  24. Luo J, Niki K, Phillips S. Neural correlates of the 'Aha! reaction'. Neuroreport. 2004;15(13):201317. [Crossref]  [PubMed]
  25. Salvi C, Bricolo E, Franconeri SL, Kounios J, Beeman M. Sudden insight is associated with shutting out visual in puts. Psychon. Bull. Rev. 2015;22(6):18149. [Crossref]  [PubMed]
  26. Kounios J, Beeman M. The cognitive neuroscience of insight. Annu Rev Psychol. 2014;65:7193. [Crossref]  [PubMed]
  27. Tik M, Sladky R, Luft CDB, Willinger D, Hoffmann A, Banissy MJB ve ark. Ultrahighfield fMRI insights on insight: Neural correlates of the Aha!moment. Hum Brain Mapp. 2018;39(8):324152. [Crossref]  [PubMed]  [PMC]
  28. Beeman MJ, Bowden EM. The right hemisphere maintains solutionrelated activation for yettobesolved problems. Memory & Cognition. 2000;28:1231-41. [Crossref]  [PubMed]
  29. Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007;83(6):375400. [Crossref]  [PubMed]
  30. Yeung MK, Chan AS. A Systematic Review of the Application of Functional NearInfrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev. 2021;31(1):13966.020094553. [Crossref]  [PubMed]
  31. Suzuki M, Kawagoe T, Nishiguchi S, Abe N, Otsuka Y, Nakai R et al. Neural Correlates of Working Memory Maintenance in Advanced Aging: Evidence From fMRI. Front Aging Neurosci. 2018; 10:358. [Crossref]  [PubMed]  [PMC]
  32. Başar E. A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int. J. Psychophysiol. 2012;86(1):1-24. [Crossref]  [PubMed]
  33. Horn JL, Cattell RB. Age differences in fluid and crystallized intelligence. Acta Psychol (Amst). 1967; 26(2):10729. [Crossref]  [PubMed]
  34. Wang J, Kaufman AS. Changes in fluid and crystallized intelligence across the 20to 90year age range on the KBIT. Journal of Psychoeducation Assessment, 1993;11:29-37. [Crossref]
  35. Kievit RA, Davis SW, Mitchell DJ, Taylor JR, Duncan J, Henson RN. Distinct aspects of frontal lobe structure mediate agerelated differences in fluid intelligence and multitasking. Nat Commun. 2014;5:5658. [Crossref]  [PubMed]  [PMC]
  36. Kaufman AS, Horn JL. Age changes on tests of fluid and crystallized ability for women and men on the Kaufman Adolescent and Adult Intelligence Test (KAIT) at ages 1794 years. Arch Clin Neuropsychol. 1996;11(2):97121. [Crossref]  [PubMed]
  37. Jabès A, Klencklen G, Ruggeri P, Antonietti JP, Banta Lavenex P, Lavenex P. AgeRelated Differences in RestingState EEG and Allocentric Spatial Working Memory Performance. Front Aging Neurosci. 2021;13:704362. [Crossref]  [PubMed]  [PMC]
  38. Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M et al. Neuronal basis of agerelated working memory decline. Nature. 2011;476(7359):2103. [Crossref]  [PubMed]  [PMC]
  39. Duverne S, Lemaire P. Arithmetic split effects reflect strategy selection: an adult age comparative study in addition comparison and verification tasks. Can J Exp Psychol. 2005;59(4):26278. [Crossref]  [PubMed]
  40. Pistono A, Busigny T, Jucla M, Cabirol A, Dinnat AL, Pariente J et al. An Analysis of Famous Person Semantic Memory in Aging. Exp Aging Res. 2019;45(1):7493. [Crossref]  [PubMed]
  41. Nef T, Chesham A, Schütz N, Botros AA, Vanbellingen T, Burgunder JM et al. Development and Evaluation of MazeLike Puzzle Games to Assess Cognitive and Motor Function in Aging and Neurodegenerative Diseases. Front Aging Neurosci. 2020;12:87. [Crossref]  [PubMed]  [PMC]